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Abstract—We study classification problems over relational
background structures for hypotheses that are defined using logics
with counting. The aim of this paper is to find learning algorithms
running in time sublinear in the size of the background structure.
We show that hypotheses defined by FOCN(P)-formulas over
structures of polylogarithmic degree can be learned in sublinear
time. Furthermore, we prove that for structures of unbounded
degree there is no sublinear learning algorithm for first-order
formulas.

I. INTRODUCTION

In this paper, we study Boolean classification problems over
relational structures. We consider the relational structure, also
called background structure, as fixed. For fixed k ∈ N, the goal
is to learn a classification function, called a hypothesis, that
maps k-ary tuples from the relational structure to Booleans.
Given a sequence of training examples, each of which consists
of a k-ary tuple from the background structure and a Boolean,
we aim to find a hypothesis that is consistent with the examples.
In other words, our goal is to learn a description of a k-ary
relation that is consistent with a given sequence of positive
and negative examples, i.e., the relation contains all positive
and no negative examples.

Example I.1. Consider a relational database containing data
from an online encyclopedia. The universe of the structure
consists of all pages of the encyclopedia. We have a binary
relation representing hyperlinks between pages and a unary
relation representing category pages. Pages that are not category
pages are article pages. Our task is to learn a binary relation
containing tuples of pages, where the first element of the tuple
is a category page and the second element is a page that belongs
to the category. For this we are given a training sequence of
classified tuples, e.g. tuples that have been classified by experts
beforehand. The goal is to learn the description of a relation
that is consistent with the training sequence.

Consider the background structure and the training examples
given in Figure 1. A description of a consistent relation would
be the following. The relation contains all tuples, where the
first element is a category page and the second page is linked
from the category page or there is another page linked from the
category page and both pages have at least two common linked
pages. The corresponding relation can be seen in Figure 2. For
example the tuple (1, 8) is contained in the relation since Page
1 is a category, Page 2 is linked from the category, and there
are at least two pages (Pages 3, 4, and 5) that both Page 2 and
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Figure 1. (Left) A background structure viewed as a directed graph. Vertices
represent pages in the online encyclopedia, category pages are black and edges
represent hyperlinks. (Right) Training examples. Green edges denote positive
examples, i.e., the tuple is contained in the relation. Red edges denote negative
examples.
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Figure 2. The learned relation from Example I.1.

Page 8 link to. Note that the relation is consistent with the
training examples.

Since the data are contained in a relational database, it would
be convenient to learn an SQL query that defines the relation.
Figure 3 shows an SQL query for the learned relation. ⌟

This paper studies the classification problems in the declara-
tive framework that has been introduced in [1], [2], where
logics are used to describe the hypotheses. Grohe and Ritzert
showed in [2] that learning hypotheses in first-order logic is
possible in time polynomial in the number of training examples
and the degree of the background structure. For structures of
polylogarithmic degree and training sequences of polylogarith-
mic length, measured in the size of the background structure,
this yields a learning algorithm that runs in polylogarithmic
time. We are interested in learning hypotheses that can be
expressed in SQL. While first-order logic can be seen as
the “logical core” of SQL, there are aggregating operators
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SELECT C . ’ page ’ , CatLink . ’ t o ’
FROM Categories C , Links CatLink
WHERE CatLink . ’ from ’ = C . ’ page ’
UNION
SELECT C . ’ page ’ , L1 . ’ from ’
FROM Categories C , Links CatLink ,

Links L1 , Links L2
WHERE CatLink . ’ from ’ = C . ’ page ’
AND CatLink . ’ t o ’ = L2 . ’ from ’
AND L1 . ’ t o ’ = L2 . ’ t o ’
GROUP BY C . ’ page ’ , L1 . ’ from ’
HAVING count ( * ) >= 2 ;

Figure 3. An SQL query that defines the relation learned in Example I.1.

in SQL, namely COUNT, AVG, SUM, MIN, and MAX, that
do not have corresponding expressions in first-order logic.
Motivated by this, we study the logic FOCN(P), which Kuske
and Schweikardt introduced in [3] and which extends first-
order logic by cardinality conditions similar to the COUNT
operator in SQL. The logic depends on a collection of numerical
predicates P, i.e., functions P : Zm → {0, 1}, that we use in
FOCN(P)-formulas to express restrictions on the results of
counting terms.

Let B = (U(B), L, C) be the background structure from
Example I.1, where U(B) is the set of all pages, L is the
binary relation of links between pages and C is the unary
relation of category pages. The SQL query from Figure 3 can
be expressed as the FOCN(P)-formula

φ(c, p) = Cc ∧
(
Lcp ∨ ∃x

(
Lcx ∧#(y).(Lxy ∧ Lpy) ⩾ 2

))
,

where ⩾∈ P. The counting term #(y).(Lxy ∧ Lpy) counts
the number of pages y such that both x and p link to y. The
formula #(y).(Lxy∧Lpy) ⩾ 2 checks whether this number is
at least 2. In a more general approach, we may use the formula

φ′(c, p;κ) = Cc∧
(
Lcp∨∃x

(
Lcx∧#(y).(Lxy∧Lpy) ⩾ κ

))
with the free number variable κ. When viewed as a parameter,
for every assignment of κ we obtain a new hypothesis.

A hypothesis consists of the following components: a
formula φ(x̄ ; ȳ, κ̄) as well as two parameter tuples v̄ in
U(B)ℓ and λ̄ in Zm. Together, they describe a function
Jφ(x̄ ; v̄, λ̄)KB : U(B)k → {0, 1} with

Jφ(x̄ ; v̄, λ̄)KB(ū) :=

{
1 if B |= φ(ū ; v̄, λ̄)

0 otherwise.

Given a finite training sequence T of tuples (ū, c) with
ū ∈ U(B)k and c ∈ {0, 1}, our goal is to learn a hypothesis
(φ(x̄ ; ȳ, κ̄), v̄, λ̄) that is consistent with the training examples,
i.e., Jφ(x̄ ; v̄, λ̄)KB(ū) = c for all training examples (ū, c). In
the context of machine learning, the hypothesis is a parametric
model and the described learning problem is called model
learning.

A. Our Results

We study the model-learning problem for FOCN(P) over
relational background structures. Instead of random access
to the background structure, the algorithms we consider are
granted only local access (see Section II for details). We
measure the complexity of FOCN(P)-formulas in terms of
their binding width and binding rank [3]. The binding width
bounds the number of variables that occur in quantifier and
counting terms. The binding rank bounds the nesting depth
of these constructs. We bound the complexity of first-order
formulas in Hanf normal form in terms of their locality radius.
This allows us to consider only local neighborhoods in the
model-checking problem for the given formula. We give a
more detailed description of these parameters in Section II.

We give an algorithm for the model-learning problem for
FOCN(P) that runs in time polylogarithmic in the size of
the background structure, polynomial in the length of the
training sequence, and quasipolynomial in the degree of the
background structure. The behavior of the algorithm depends
on the existence of a target hypothesis that is consistent with
the training sequence and whose FOCN(P)-formula has binding
rank at most r and binding width at most w. Both r and w are
parameters of the algorithm. If there is no such hypothesis, then
the algorithm may reject the input. Otherwise it always returns
a hypothesis. Although the FOCN(P)-formula of the target
hypothesis might contain counting terms, the algorithm will
only return first-order formulas. This is due to the surprising
fact that on a fixed background structure first-order formulas
are as expressive as FOCN(P)-formulas. The following theorem
is the main result of this paper.

Theorem I.1. Let k, ℓ, r, w ∈ N. Then there is a learning
algorithm Lcon for the k-ary learning problem over some finite
relational structure B, that receives a training sequence T and
the degree of the structure ∆B as input, with the following
properties:

(1) If there are an FOCN(P)-formula φ(x̄ ; ȳ, κ̄) of binding
rank at most r and binding width at most w and parameter
tuples v̄ ∈ U(B)ℓ and λ̄ ∈ {0, . . . , |B|}|κ̄| such that
Jφ(x̄ ; v̄, λ̄)KB is consistent with T , then Lcon always
returns a hypothesis.

(2) If the algorithm returns a hypothesis H , then H is of the
form (φ∗(x̄ ; ȳ), v̄∗) for some first-order formula φ∗(x̄ ; ȳ)
in Hanf normal form with locality radius smaller than
(2w+1)r and v̄∗ ∈ U(B)ℓ, and Jφ∗(x̄ ; v̄∗)KB is consistent
with the input sequence T of training examples.

(3) The algorithm runs in time (log n + t)O(1) · dpolylog(d)
with only local access to B, where n := |B|, d := ∆B
and t := |T |.

(4) The hypothesis returned by the algorithm can be evaluated
in time (log n+ t)O(1) · dpolylog(d) with only local access
to B.

When the degree of the background structure and the length
of the training sequence are bounded by polylog(|B|), then



the running time of the algorithm is sublinear in the size of
the background structure. Thus we obtain the following result.

Corollary I.2. There is a consistent model-learning algorithm
for FOCN(P)-formulas with only local access on background
structures with polylogarithmic degree that runs in sublinear
time on training sequences of polylogarithmic length, measured
in the size of the background structure.

Theorem I.1 is a direct generalization of the corresponding
theorem for first-order logic due to Grohe and Ritzert [2], albeit
with a slightly worse running time that is quasipolynomial
in the degree. This generalization is well-motivated by the
fact that typical machine-learning models have numerical
parameters; our results may be seen as a first step towards
including numerical aspects in the declarative framework. While
the generalization may seem straightforward at first sight, at
least for background structures of small (say, logarithmic) but
unbounded degree, it is not obvious that an extension of the
first-order result to FOCN(P) holds at all. The reason is that
FOCN(P) loses its strong locality properties on structures of
unbounded degree. For example, by comparing the degree
sequences of the neighbors of nodes one can establish quite
complex relations that may range over long distances. Indeed, as
shown by Grohe and Schweikardt [4], various algorithmic meta
theorems, whose proofs are also based on locality properties,
fail when extended from first-order logic to first-order logic with
counting. We show that it suffices to consider only FO-formulas
to find a consistent hypothesis. However, the quantifier rank of
the FO-formulas is polynomial in the degree of the background
structure. Hence, a direct application of Grohe’s and Ritzert’s
results [2] would not yield a sublinear-time learning algorithm,
since the running time of their algorithm is non-elementary in
the quantifier rank.

Thus it is not surprising that, even though our theorem looks
similar to the corresponding result for first-order logic, there
are significant differences in the proofs. The proof of the first-
order result in [2] is based on Gaifman’s theorem, but there
is no analogue of Gaifman’s theorem for the counting logic
FOCN(P). Instead, our proof is based on Hanf’s theorem. But
this causes the technical difficulty that we have to deal with
isomorphism types of local neighborhoods in our structures. To
be able to do this within the desired time bounds, we apply a
recent new graph isomorphism test running in time npolylog(d)

for n-vertex graphs graphs of maximum degree d [5].
In addition to the results for structures of polylogarithmic

degree, in Section IV we obtain a probably approximately
correct (PAC) learning algorithm for structures of bounded
degree, i.e., the algorithm returns on most of the training sets
(probably) a hypothesis that has a small expected error on
new examples (approximately). One could also say that the
hypotheses returned by the algorithm generalize well on unseen
examples with high probability.

We also investigated learnability on background structures
without a degree restriction and obtained the following negative
result.

Theorem I.3. There is no consistent model-learning algorithm
for first-order formulas with only local access on background
structures with no degree restriction whose running time is
sublinear in the size of the background structure.

B. Related Work

The descriptive framework has been considered in [1], [2],
[6]. Grohe and Ritzert [2] showed that first-order formulas are
PAC-learnable over background structures of polylogarithmic
degree. We did not obtain an analogous result for FOCN(P)-
formulas, but we prove PAC-learnability over structures of
bounded degree and learnability of consistent hypotheses over
structures of polylogarithmic degree. Grohe, Löding and Ritzert
[6] obtained learning algorithms for monadic second-order logic
over string data.

The framework of inductive logic programming (ILP) is
closely related to the framework we consider (see, for example,
[7], [8], [9], [10], [11]). One of the main differences is that we
encode the background knowledge in a relational structure,
whereas in ILP it is represented in a background theory.
Furthermore, ILP focuses on first-order logic, whereas in our
framework different logics have been considered. Other related
learning frameworks in the context of databases can be found
in [12], [13].

In [3] Kuske and Schweikardt introduced FOCN(P), which
extends first-order logic by counting quantifiers and numerical
predicates. The logic generalizes logics like FO(Cnt) from [14]
and FO+C from [15]. Our results rely on the fact that Hanf
normal forms for FOCN(P) always exist. We use the structure
of the normal form to argue that considering FO-formulas for
our hypotheses suffices for fixed background structures. Hella
et al. studied other aggregating operators in [16].

II. BACKGROUND FROM LOGICS

A. Structures

We only consider finite structures. A signature is a finite
set σ of relation symbols and constant symbols. Every relation
symbol R ∈ σ has an arity ar(R) ∈ N. A signature is
called relational if it does not contain any constant symbol. A
(σ-)structureA consists of a finite set U(A), called the universe
of A, a relation R(A) ⊆ (U(A))ar(R) for every relation symbol
R ∈ σ, and an element c(A) for every constant symbol c ∈ σ.
The order of A is |A| := |U(A)|.

A structure B is a substructure of A, denoted by B ⊆ A,
if U(B) ⊆ U(A), R(B) ⊆ R(A) for every relation symbol
R ∈ σ and c(B) = c(A) for every constant symbol c ∈ σ. For
a relational structure A and a set V ⊆ U(A), the structure
induced by A on V is the structure A[V ] with universe V and
R(A[V ]) = R(A) ∩ V ar(R) for every relation symbol R ∈ σ.
The union of two relational structures A and B is the structure
A∪B with universe U(A)∪U(B) and R(A∪B) = R(A)∪R(B)
for all R ∈ σ. The intersection is defined analogously.

The Gaifman graph of a σ-structure A is the graph GA
with vertex set U(A) and an edge between two vertices
u, v ∈ U(A) if there is a relation symbol R ∈ σ and a tuple
(u1, . . . , uar(R)) ∈ R(A) with u, v ∈ {u1, . . . , uar(R)}. The



degree of A is the maximum degree of its Gaifman graph, i.e.,
the maximum number of neighbors of a vertex in GA.

The distance distA(u, v) between two vertices u, v ∈ U(A)
is the length of a shortest path between u and v in GA, and
distA(u, v) = ∞ if there is no path between u and v. For
r ∈ N, the r-neighborhood of a vertex u ∈ U(A) is the
set NA

r (u) = {v ∈ U(A) | distA(u, v) ⩽ r} and the r-
neighborhood of a tuple ū = (u1, . . . , uk) ∈ U(A)k is the set
NA
r (ū) =

⋃k
i=1N

A
r (ui).

We say that an algorithm has local access to a σ-structure
A if it may use queries such as “Is (u1, . . . , uar(R)) ∈ R(A)?”
and “Return a list of all neighbors of u ∈ U(A)”.

B. First-Order Logic with Counting

We assume that the reader is familiar with first-order logic.
Let σ be a relational signature. Let P a countable set of predicate
names, ar : P→ N⩾1 an arity function, and JP K ⊆ Zar(P ) the
semantics of the predicate name P ∈ P. Then we call the tuple
(P, ar, J.K) a numerical predicate collection.

Definition II.1 (FOCN(P) [3]). Let (P, ar, J.K) be a numerical
predicate collection, and let vars and nvars be disjoint sets of
structure variables and number variables, respectively. The set
of formulas for FOCN(P) is built according to the following
rules.
(F1) x1 = x2 and R(x1, . . . , xar(R)) are formulas for R ∈ σ

and structure variables x1, . . . , xar(R) ∈ vars.
(F2) If φ and ψ are formulas, then ¬φ, (φ ∧ ψ), and (φ ∨ ψ)

are also formulas.
(F3) ∃xφ and ∀xφ are formulas for x ∈ vars and a formula

φ.
(F4) If t1, . . . , tar(P ) are counting terms and P ∈ P, then

P (t1, . . . , tar(P )) is a formula.
(F5) ∃κφ is a formula for every number variable κ ∈ nvars

and every formula φ.
The set of counting terms for FOCN(P) is built according to
the following rules.

(C1) #x̄.φ is a counting term for s ∈ N, x̄ = (x1, . . . , xs) ∈
varss pairwise distinct structure variables and a formula
φ.

(C2) Every i ∈ Z is a counting term.
(C3) If t1 and t2 are counting terms, then (t1+ t2) and (t1 · t2)

are also counting terms.
(C4) Every κ ∈ nvars is a counting term.

Let I = (A, β) be an interpretation, where A is a relational
structure with universe U(A), and β : vars∪nvars→ U(A)∪Z
with β(x) ∈ U(A) for x ∈ vars and β(κ) ∈ Z for κ ∈ nvars.

For k, ℓ ∈ N, x1, . . . , xk ∈ vars, κ1, . . . , κℓ ∈
nvars, a1, . . . , ak ∈ U(A), and λ1, . . . , λℓ ∈ Z, let
I a1,...,akx1,...,xk

λ1,...,λℓ

κ1,...,κℓ
:= (A, β′) with β′(xi) := ai for all i ∈ [k],

β′(κi) := λi for all i ∈ [ℓ], and β′(z) := β(z) for
all z ∈ (vars ∪ nvars) \ {x1, . . . , xk, κ1, . . . , κℓ}. Then the
semantics for a formula or a counting term is defined as follows.
(F1) Jx1 = x2KI := 1 if β(x1) = β(x2), and Jx1 = x2KI := 0

otherwise.

JR(x1, . . . , xar(R))KI := 1 if (β(x1), . . . , β(xar(R))) ∈
RA, and JR(x1, . . . , xar(R))KI := 0 otherwise.

(F2) J¬φKI := 1− JφKI , Jφ ∧ ψKI := min
{
JφKI , JψKI

}
and

Jφ ∨ ψKI := max
{
JφKI , JψKI

}
.

(F3) J∃xφKI := max{JφKI
a
x | a ∈ U(A)} and

J∀xφKI := min{JφKI
a
x | a ∈ U(A)}.

(F4) JP (t1, . . . , tar(P ))KI := 1 if (Jt1KI , . . . , Jtar(P )KI) ∈ JP K
and otherwise JP (t1, . . . , tar(P ))KI := 0.

(F5) J∃κφKI := max{JφKI
k
κ | k ∈ {0, . . . , |U(A)|}}.

(C1) J#x̄.φKI :=
∣∣∣{ā ∈ (U(A))s | JφKI

a1,...,as
x1,...,xs = 1}

∣∣∣.
(C2) JiKI := i.
(C3) J(t1 + t2)KI := Jt1KI + Jt2KI and

J(t1 · t2)KI := Jt1KI · Jt2KI .
(C4) JκKI := β(κ). ⌟

Let φ be an FOCN(P)-formula. The binding rank br(φ) of
φ is the maximal nesting depth of constructs of the form ∃x
and ∀x with x ∈ vars and #x̄, where x̄ is a tuple in vars.
The binding width bw(φ) of φ is the maximal arity of an
x̄ of a term #x̄.ψ in φ. If φ contains no such term, then
bw(φ) = 1 if φ contains a quantifier ∃x or ∀x with x ∈ vars,
and bw(φ) = 0 otherwise.

C. Types, spheres and sphere formulas

Let r ⩾ 0 and n ⩾ 1, and let c1, c2, . . . be a sequence of
pairwise distinct constant symbols. An r-type (with n centers)
is a structure τ = (A, a1, . . . , an) over the signature σ ⊎
{c1, . . . , cn}, where A is a σ-structure with a1, . . . , an ∈ U(A)
and U(A) = NA

r (a1, . . . , an). The elements a1, . . . , an are
the centers of τ . For every tuple ā ∈ (U(A))n, the r-sphere
of ā in A is the r-type with n centers

NA
r (ā) = (A[NA

r (ā)], ā).

Let τ be an r-type. A first-order formula sphτ (x̄) is a sphere-
formula if for every σ-structure B and every tuple b̄ ∈ U(B)n
we have

B |= sphτ (b̄) ⇐⇒ NB
r (b̄)

∼= τ.

The locality radius of sphτ (x̄) is r.

D. Numerical oc-type conditions and hnf-formulas

A basic counting term is a counting term of the form
#(x).sphτ (x), where x is a structure variable in vars and τ is
an r-type with a single center. The radius r is called the locality
radius of the basic counting term. In a σ-structure A, a basic
counting term evaluates to the number of elements a ∈ U(A)
with NA

r (a) ∼= τ , i.e., the number of r-neighborhoods with
one center in A that are isomorphic to τ .

A numerical condition on occurrences of types with one
center (or numerical oc-type condition) is an FOCN(P)-formula
that is built from basic counting terms and rules (F2), (F4),
(F5), (C2), (C3), and (C4), i.e., using number variables and
integers, and combining them by addition, multiplication,
numerical predicates from P ∪ {P∃}, Boolean combinations,
and quantification of number variables. Its locality radius is the
maximal locality radius of the involved basic counting terms.



Numerical oc-type conditions do not have any free structure
variables.

A formula is in Hanf normal form for FOCN(P) or an
hnf-formula for FOCN(P) if it is a Boolean combination of
numerical oc-type conditions and sphere formulas. The locality
radius of an hnf-formula is the maximal locality radius of the
involved conditions and formulas.

E. Local hnf-formulas

Let A be a relational structure over σ, ū ∈ U(A)k for some
k ∈ N and r ∈ N. Then the local hnf-formulas (for FOCN(P))
of ū with locality radius smaller than r in A are

lhfr(A, ū) = {φ(x̄) hnf-formula | A |= φ(ū),

locality radius of φ is smaller than r}.

The following results help us to show that reduced formula
and parameter spaces suffice to find consistent hypotheses.
The first lemma states that two tuples satisfy the same local
hnf-formulas if their neighborhoods are isomorphic.

Lemma II.2. Let A be a structure over a relational signature
σ, k, r ∈ N and ū, ū′ ∈ U(A)k. If NA

r (ū) ∼= NA
r (ū′), then

lhfr+1(A, ū) = lhfr+1(A, ū′).

Proof: Let φ(x̄) be an hnf-formula with locality radius at
most r. Then φ is a Boolean combination of numerical oc-type
conditions and sphere formulas with locality radius at most r.
The numerical oc-type conditions do not have any free structure
variables and are thus independent from the assignment for
x̄. The free variables of the sphere formulas are a subset of
free(φ). Let sphτ (xi1 , . . . , xiℓ) be a sphere-formula used in
φ with xi1 , . . . , xiℓ ∈ free(φ) and τ an r′-type with ℓ centers
for r′ ⩽ r. Then NA

r (ui1 , . . . , uiℓ)
∼= NA

r (u′i1 , . . . , u
′
iℓ
) and

NA
r′ (ui1 , . . . , uiℓ)

∼= NA
r′ (u

′
i1
, . . . , u′iℓ) and hence

A |= sphτ (ui1 , . . . , uiℓ)

⇐⇒ NA
r′ (ū) |= sphτ (ui1 , . . . , uiℓ)

⇐⇒ NA
r′ (ū

′) |= sphτ (u
′
i1 , . . . , u

′
iℓ
)

⇐⇒ A |= sphτ (u
′
i1 , . . . , u

′
iℓ
).

This holds for all sphere formulas in φ. Thus A |= φ(ū) if
and only if A |= φ(ū′).

The following result is a local variant of the Feferman-
Vaught Theorem [17] translated to our context. It allows us to
analyze the parameters we choose by splitting them into two
parts with disjoint neighborhoods.

Lemma II.3 (Local Composition Lemma). Let A,A′ be
structures over a relational signature σ, ū ∈ U(A)k, v̄ ∈
U(A)ℓ, ū′ ∈ U(A′)k, v̄′ ∈ U(A′)ℓ, and r ∈ N, such that
NA
r (ū) ∩NA

r (v̄) = NA′

r (ū′) ∩NA′

r (v̄′) = ∅, lhfr+1(A, ū) =
lhfr+1(A′, ū′) and lhfr+1(A, v̄) = lhfr+1(A′, v̄′). Then

lhfr+1(A, ūv̄) = lhfr+1(A′, ū′v̄′).

Proof: All hnf-sentences φ with locality radius at most
r that satisfy A |= φ are contained in lhfr+1(A, ū) and thus

also in lhfr+1(A′, ū′). Hence A and A′ model the same hnf-
sentences with locality radius at most r.

We know that the sphere-formula sphNA
r (ū)(x̄) is contained

in lhfr+1(A, ū) = lhfr+1(A′, ū′), so NA
r (ū) ∼= NA′

r (ū′).
Analogously it follows that NA

r (v̄) ∼= NA′

r (v̄′). Since
NA
r (ū) ∩ NA

r (v̄) = ∅ and NA′

r (ū′) ∩ NA′

r (v̄′) = ∅, we also
obtain NA

r (ūv̄) ∼= NA′

r (ū′v̄′). Thus for all sphere formulas
ψ(x1, . . . , xm) with locality radius at most r, we know that
A |= ψ(w1, . . . , wm) for w1, . . . , wm ∈ ū ∪ v̄ if and only if
A′ |= ψ(w′

1, . . . , w
′
m).

Let φ ∈ lhfr+1(A, ūv̄). Then φ is a Boolean combi-
nation of hnf-sentences and sphere formulas. These hnf-
sentences and sphere formulas hold for (A, ūv̄) if and only
if they hold for (A′, ū′v̄′). Thus φ ∈ lhfr+1(A′, ū′v̄′) and
lhfr+1(A, ūv̄) ⊆ lhfr+1(A′, ū′v̄′). Analogously we can show
that lhfr+1(A′, ū′v̄′) ⊆ lhfr+1(A, ūv̄).

For d ∈ N, two formulas φ,φ′ are called d-equivalent
if JφKI = Jφ′KI for all interpretations I = (A, β) for all
structures A of degree at most d. The following result is due
to Kuske and Schweikardt [3].

Theorem II.4. Let (P, ar, J.K) be a numerical predicate
collection. For any relational signature σ, any degree bound
d ∈ N, and any FOCN(P)[σ]-formula φ, there exists a d-
equivalent hnf-formula ψ for FOCN(P)[σ] of locality radius
smaller than (2 bw(φ) + 1)br(φ) with free(ψ) = free(φ).

Using this result, we can show that a formula behaves the
same for two different assignments of structure variables if the
local hnf-formulas of the assigned tuples are the same.

Lemma II.5. Let A be a structure over a relational signature
σ, φ(x̄, κ̄) an FOCN(P)-formula, ū, ū′ ∈ U(A)|x| and λ̄ ∈
{0, . . . , |A|}|κ|. If

lhf(2 bw(φ)+1)br(φ)(A, ū) = lhf(2 bw(φ)+1)br(φ)(A, ū′),

then
A |= φ(ū, λ̄) ⇐⇒ A |= φ(ū′, λ̄).

Proof: Let φ′(x̄) := φ(x̄, λ̄), r := br(φ) = br(φ′) and
w := bw(φ) = bw(φ′). Using Theorem II.4 we obtain an
hnf-formula ψ with locality radius smaller than (2w+1)r that
is ∆A-equivalent to φ′ and, just like φ′, doesn’t have any free
number variables. Then

A |= φ(ū, λ̄) ⇐⇒ A |= ψ(ū)

⇐⇒ ψ ∈ lhf(2w+1)r (A, ū)
⇐⇒ ψ ∈ lhf(2w+1)r (A, ū′)
⇐⇒ A |= ψ(ū′)

⇐⇒ A |= φ(ū′, λ̄).

III. LEARNING FOCN(P)-DEFINABLE CONCEPTS OVER
STRUCTURES OF POLYLOGARITHMIC DEGREE

In this section, we prove Theorem I.1 and a variant
of it, as well as negative results, including Theorem I.3.
Let k, ℓ, t, r, w ∈ N be fixed, x̄ := (x1, . . . , xk) instance



variables, ȳ := (y1, . . . , yℓ) parameter variables, B a back-
ground structure over a relational signature σ and T :=
(U(B)k × {0, 1})t training sequences. For s ∈ N and T ∈ T ,
T = ((ū1, c1), . . . , (ūt, ct)), let NB

s (T ) :=
⋃t
i=1N

B
s (ūi). Let

Φ be the set of FOCN(P)-formulas φ(x̄ ; ȳ, κ̄) with binding
width at most w, binding rank at most r and free number
variables κ̄, and

C := {Jφ(x̄ ; v̄, λ̄)KB | φ(x̄ ; ȳ, κ̄) ∈ Φ, v̄ ∈ U(B)ℓ,
λ̄ ∈ {0, . . . , |B|}|κ̄|}.

To prove Theorem I.1, we give an algorithm that uses brute
force. Given a training sequence that is consistent with some
hypothesis in C, the algorithm finds a consistent hypothesis
consisting of a first-order formula and a parameter tuple v̄ ∈
U(B)ℓ. The following lemma states that it suffices to search
in a reduced parameter space and to check a single formula
per parameter. This enables us to find a consistent hypothesis
with a sufficient running time.

Lemma III.1. Let T = ((ū1, c1), . . . , (ūt, ct)) ∈ T be
consistent with some C ∈ C. Then there is a tuple v̄∗ =
(v1, . . . , vℓ) ∈ NB

2ℓ[(2w+1)r−1](T )
ℓ and some m ⩽ ℓ such that

Jφ∗(x̄, v̄∗)KB is consistent with T for

φ∗(x̄ ; ȳ) :=
∨

i∈[t], ci=1

ϑi(x̄ ; ȳ
◦),

ϑi(x̄ ; ȳ
◦) := sphNB

(2w+1)r−1
(ūiv̄◦)(x̄ȳ

◦), v◦ := (v1, . . . , vm),
and ȳ◦ := (y1, . . . , ym).

Proof: Let φ(x̄ ; ȳ, κ̄) ∈ Φ and v̄ = (v1, . . . , vℓ) ∈ U(B)ℓ,
λ̄ ∈ {0, . . . , |B|}κ̄ such that C = Jφ(x̄ ; v̄, λ̄)KB is consis-
tent with T . Now define for some m ⩽ ℓ the elements
v(1), . . . , v(m) ∈ {v1, . . . , vℓ} and the sets N (0), . . . , N (m) ⊆
U(B) by setting N (0) := NB

(2w+1)r−1(T ) and defining the rest
as follows: Given N (i), if there is some v ∈ {v1, . . . , vℓ} \
{v(1), . . . , v(i)} such that distB(v,N (i)) ⩽ (2w+1)r, then let
v(i+1) := v. Choose arbitrarily if there is more than one. Let
N (i+1) := N (i) ∪ NB

(2w+1)r−1(v
(i+1)). If there is no such v,

then set m := i and stop.
Let N◦ := N (m) and w.l.o.g. let v(i) = vi for i ∈ [m].

Let v̄◦ := (v1, . . . , vm) and v̄• := (vm+1, . . . , vℓ). Then v̄◦ ∈
NB

2ℓ[(2w+1)r−1](T )
m and

N◦ =

t⋃
i=1

NB
(2w+1)r−1(ūi) ∪

m⋃
i=1

NB
(2w+1)r−1(vi) (1)

and
NB

(2w+1)r−1(v̄
•) ∩N◦ = ∅. (2)

Claim 1. Let i, j ∈ [t] such that B |= ϑi(ūj ; v̄
◦). Then ci = cj .

Proof: From B |= ϑi(ūj ; v̄
◦) it follows that

NB
(2w+1)r−1(ūiv̄

◦) ∼= NB
(2w+1)r−1(ūj v̄

◦). Using Lemma II.2
we obtain lhf(2w+1)r (B, ūi) = lhf(2w+1)r (B, ūj). Fur-
thermore, from Equation (1) and Equation (2) it fol-
lows that NB

(2w+1)r−1(ūiv̄
◦) ∩ NB

(2w+1)r−1(v̄
•) = ∅ and

Algorithm Lcon
Input: Training sequence T = ((ū1, c1)), . . . , (ūt, ct)) ∈ T ,

d = ∆B, local access to background structure B
1: N ← NB

2ℓ[(2w+1)r−1](T )
2: for all v̄∗ ∈ Nm, m ⩽ ℓ do
3: for i = 1, . . . , t do
4: Ni ← NB

(2w+1)r−1(ūiv̄
∗)

5: ϑi(x̄ ; ȳ)← sphNi
(x̄ȳ) ▷ a d-bounded

[(2w + 1)r − 1]-type with k +m centers
6: φ∗(x̄ ; ȳ)←

∨
i∈[t], ci=1 ϑi(x̄ ; ȳ)

7: consistent← true
8: for i ∈ [t] with ci = 0 do
9: for j ∈ [t] with cj = 1 do

10: if Ni ∼= Nj then
11: consistent← false
12: if consistent then
13: return (φ∗(x̄ ; ȳ), v̄∗)

14: reject

Figure 4. Learning algorithm Lcon of Theorem I.1

NB
(2w+1)r−1(ūj v̄

◦) ∩ NB
(2w+1)r−1(v̄

•) = ∅. Thus with
Lemma II.3 we obtain

lhf(2w+1)r (B, ūiv̄) = lhf(2w+1)r (B, ūj v̄).

and hence with Lemma II.5 we get

B |= φ(ūi ; v̄, λ̄) ⇐⇒ B |= φ(ūj ; v̄, λ̄).

This implies ci = cj . ⌟
Set

v̄∗ := (v1, . . . , vm, v, . . . , v︸ ︷︷ ︸
ℓ−m times

)

for some arbitrary v ∈ NB
2ℓ[(2w+1)r−1](T ). Then v̄∗ ∈

NB
2ℓ[(2w+1)r−1](T )

ℓ. It remains to show that Jφ∗(x̄ ; v̄∗)KB is
consistent with T . If B |= φ∗(ūi ; v̄

∗), then there is some
p ∈ [t] with cp = 1 and B |= ϑp(ūi ; v̄

∗). Using the claim it
follows that ci = cp = 1. On the other hand, if ci = 1, then
B |= φ∗(ūi ; v̄

∗). Thus Jφ∗(x̄ ; v̄∗)KB is consistent with T .
In our algorithm, we have to compare isomorphism types

of local neighborhoods. To do this within the desired time
bounds, we apply the following result due to Grohe, Neuen
and Schweitzer [5].

Theorem III.2. Let A1 and A2 be two σ-structures with
n := max{|A1| , |A2|}, d := max{∆A1,∆A2} and m :=
maxR∈σ ar(R). One can check whether A1

∼= A2 in time
nO(m·(log d)c) for some constant c.

A. Consistent Hypotheses

We now prove the main theorem.
Proof of Theorem I.1: The pseudocode for our algorithm is

shown in Figure 4. Because of Lemma III.1 the algorithm satis-
fies Condition (1). Let (φ∗(x̄ ; ȳ), v̄∗) be the hypothesis returned
by the algorithm. Note that NB

(2w+1)r−1(ūv̄
∗) |= φ∗(ū, v̄∗) iff

B |= φ∗(ū, v̄∗) for all (ū, c) ∈ T , because φ∗ is a disjunction



of sphere formulas of locality radius smaller than (2w+1)r. For
(ūi, 1) ∈ T we know by construction that Ni |= φ∗(ūi ; v̄

∗).
For all (ūi, 0) ∈ T the algorithm checks that there is no
(ūj , 1) ∈ T with Ni ∼= Nj and thus Ni ̸|= φ∗(ūi ; v̄

∗). Hence
the hypothesis is consistent with the input sequence and the
algorithm satisfies Condition (2) of the theorem.

Algorithm Lcon computes Ni = NB
(2w+1)r−1(ūiv̄

∗) for all
i ∈ [t]. |Ni| ⩽ (k + ℓ) · d(2w+1)r and the representation size
is in (log n + d)O(1), because k, ℓ, r and w are constant.
Each sphere-formula can be computed in time (log n · (k +
ℓ) · d(2w+1)r )O(∥σ∥) = (log n+ d)O(1). ([3]) Thus φ∗ can be
computed in time (log n+ d+ t)O(1).

When checking whether φ∗ is consistent with T , we check
whether Ni and Nj are isomorphic. Using Theorem III.2 a
single isomorphism test takes time

(max{|Ni| , |Nj |})O(maxR∈σ ar(R)·(logmax{∆Ni,∆Nj})c)

⩽
(
(k + ℓ) · d(2w+1)r

)O((log d)c)

⩽ dO((log d)c)

Before checking whether two substructures are isomorphic,
we rename the vertices in the substructure such that the
representation size no longer depends on log n, but on the
size of the substructures. This can be done in time (log n)O(1).
Hence the consistency of the formula can be checked in time
(log n+ t)O(1) · dO((log d)c).

The maximum number of iterations in the outer loop is∑ℓ
m=1 |N |m ⩽ ℓ · (2tkd2ℓ(2w+1)r )ℓ ∈ (t+ d)O(1) and N can

be computed with only local access to B in time (t+ d)O(1).
All in all the running time of the algorithm is in (log n+t)O(1) ·
dO((log d)c). This shows that the algorithm satisfies Condition
(3).

To evaluate the formula returned by the algorithm for ū,
we only have to evaluate it using the structure NB

(2w+1)r−1(ū)
with only local access to B, so the running time is in (log n+
t)O(1) · dO((log d)c) and Condition (4) is satisfied.

If we consider k, ℓ, r and w as part of the input, then a more
thorough analysis shows that the running time of the algorithm
is exponential in polylog(d) log(k)ℓ2(2w+1)r+ ℓ · log(t) and
polylogarithmic in n.

Theorem I.3 stated that there is no consistent model-learning
algorithm for first-order formulas on background structures
with no degree restriction that runs in sublinear time with only
local access. In the proof we use the fact that an algorithm
is unable to see all vertices of the background structure in
sublinear time.

Proof of Theorem I.3: Let k, ℓ = 1 and consider
undirected graphs Gij of size n for i ∈ {1, 2} and 1 ⩽ j ⩽ t,
where t is an even integer. Let G11 and G21 be graphs with
no edges and G12 and G22 be graphs with a single edge. For
j ⩾ 3 let Gij be the empty graph iff (j − i) is even and let
Gij be the graph with a single edge else.

y1 y2

x1

x2

x3

x4

x5

x6

...

xt

G•11

G•12

G•13

G•14

G•15

G•16
...

G•1t

G•21

G•22

G•23

G•24

G•25

G•26
...

G•2t

S S

R

R

R

R

R

R

R

Figure 5. The background structure B in the proof of Theorem I.3. The red
dot marks graphs with no edges. The green dot marks graphs with a single
edge.

Define the background structure B for the relational signature
σ = {E,R, S} by

U(B) := {x1, . . . , xt, y1, y2}
⊎

i∈{1,2},
1⩽j⩽t

V (Gij),

EB :=
⊎

i∈{1,2},
1⩽j⩽t

E(Gij),

RB := {(xj , v) | 1 ⩽ j ⩽ t, v ∈ Gij for some i ∈ {1, 2}},

and

SB := {(yi, v) | i ∈ {1, 2}, v ∈ Gij for some 1 ⩽ j ⩽ t}.

The background structure can be seen in Figure 5. The size
of the background structure is |B| = t · (2 |G11|+ 1) + 2 and
thus linear in the size of the graphs |Gij |. Let

φ(x ; y) := ∃v1∃v2 Rxv1 ∧Rxv2 ∧ Syv1 ∧ Syv2 ∧ Ev1v2

and consider training examples (x1, ci1), . . . , (xt, cit) with
cij = Jφ(xj ; yi)KB for i ∈ {1, 2} and 1 ⩽ j ⩽ t. The formula



φ(xj ; yi) is evaluated to 1 if and only if Gij contains an edge.
Define two training sequences

T1 :=((x1, c11), . . . , (xt, c1t))

=((x1, 0), (x2, 1), (x3, 0), (x4, 1),

(x5, 0), (x6, 1), . . . , (xt−1, 0), (xt, 1)) and
T2 :=((x1, c21), (x2, c22), (x4, c24), (x3, c23),

(x6, c26), (x5, c25), . . . , (xt, c2t), (xt−1, c2(t−1)))

=((x1, 0), (x2, 1), (x4, 0), (x3, 1),

(x6, 0), (x5, 1), . . . , (xt, 0), (xt−1, 1)).

Let L be a sublinear deterministic model-learning algorithm
and run it on the training sequences T1 and T2. Then there
is some vertex order such that L is unable to find even a
single edge from E. In both sequences the algorithm receives
the same sequence of Booleans and all visited vertices have
a single R-edge, a single S-edge and no E-edge. Thus both
training sequences are indistinguishable for the learner and
hence it has to return the same formula ψ(x ; y) ∈ FO for both
sequences T1 and T2.

The learner L can distinguish two different vertex sets
{xj} ∪ V (G1j) ∪ V (G2j) and {xj′} ∪ V (G1j′) ∪ V (G2j′)
only by the values of cij and cij′ . Hence, by choosing a
suitable vertex ordering, we can assume that the algorithm
chooses the parameters only from the set {y1, y2, x1, x2} ∪
V (G11) ∪ V (G12) ∪ V (G21) ∪ V (G22). Since T1 and T2 are
indistinguishable, it has to choose the same parameter for T1
and T2, so v1 = v2.

But then L can’t be consistent with both T1 and T2, because
c13 = 0 ̸= 1 = c23 and both values would have to be equal to
Jψ(x3, v1)KB = Jψ(x3, v2)KB.

Although we do not give a formal introduction into probably
approximately correct (PAC) learning, we would like to mention
that one can easily extend Theorem I.3 analogously to Grohe,
Löding and Ritzert [6] to show that there is no sublinear
model-learning algorithm for first-order formulas, that is a
PAC-learning algorithm, on background structures with no
degree restriction and only local access.

In addition to model learning, Grohe and Ritzert [2] also
considered parameter learning, where we assume a fixed
formula and we only want to find parameters such that the
resulting hypothesis is consistent with the training examples.

Grohe and Ritzert showed that parameter learning is not
possible in sublinear time with only local access. Here we
prove a stronger result that shows that parameter learning is at
least as hard as solving q-CLIQUE.

Theorem III.3. If the exponential-time hypothesis (ETH)
holds, then there is no consistent parameter-learning algorithm
for first-order formulas φ of quantifier rank at most q on
background structures B with no degree restriction running in
time f(q) · |B|o(q) for some function f , i.e. that, given φ and
a sequence of training examples T , returns a tuple v̄ such that
Jφ(x̄ ; v̄)KB is consistent with all training examples.

Proof: Let q ∈ N. For the background structure let G be
a graph of size |G| ≫ q, G′ a copy of G and H+ and H−

y1

y2

x1 x2

G H+

H− G′

Y1

Y2

X1 X2

X

Y

Figure 6. The background structure B in the proof of Theorem III.3.

graphs of size |G| such that H+ has a q-clique and H− does
not, e.g. choose H+ = Kq ⊎K |G|−q and H− = K |G| where
Ks and Ks are the complete graph and the empty graph on s
vertices for s ∈ N.

Define the background structure B for the relational signature
σ := {E,X, Y,X1, X2, Y1, Y2} by

U(B) := {x1, x2, y1, y2} ⊎ V (G) ⊎ V (G′)

⊎ V (H+) ⊎ V (H−),

E(B) := E(G) ⊎ E(G′) ⊎ E(H+) ⊎ E(H−),

X(B) := {x1, x2},
Y (B) := {y1, y2},
X1(B) := {x1} ⊎ V (G) ⊎ V (H+),

X2(B) := {x2} ⊎ V (G′) ⊎ V (H−),

Y1(B) := {y1} ⊎ V (G) ⊎ V (H−), and
Y2(B) := {y2} ⊎ V (G′) ⊎ V (H+).

The background structure can be seen in Figure 6. Let

ψij(x ; y) := Xix ∧ Yjy ∧ ∃v1 · · · ∃vq q∧
s=1

(Xivs ∧ Yjvs) ∧
∧

1⩽s1<s2⩽q

Evs1vs2


and

φ(x ; y) := Xx ∧ Y y ∧
2∨
i=1

2∨
j=1

ψij(x ; y).

For a learned parameter v the hypothesis Jφ(x ; v)KB is only
consistent with the training sequence ((x1, true), (x2, false)),
if v ∈ {y1, y2}. The parameter v is equal to y1 if and only if
G has a q-clique. Assuming ETH, there is no algorithm that
checks whether a graph G has a q-clique in time f(q) · |G|o(q)
[18]. One can check whether G has a q-clique by computing
B in time quadratic in |G| (or linear in |V (G)| + |E(G)|),
learning the parameter v and then checking whether v is equal
to y1. Thus learning the parameter is not possible in time
f(q) · |G|o(q) = f(q) · |B|o(q).

B. Minimizing the training error

We continue the analysis of model learning. In Theorem I.1
we allow the algorithm to reject a training sequence T if



there is no consistent hypothesis within the given binding rank
and binding width bounds. Instead of requiring a consistent
hypothesis, we now try to find a hypothesis H : U(B)k →
{0, 1} that minimizes the number of errors, i.e., that minimizes
the training error

errT (H) =
1

|T |
|{(ū, c) ∈ T | H(ū) ̸= c}| .

In the next theorem we generalize the results of Theorem I.1.

Theorem III.4. Let k, ℓ, r, w ∈ N. Then there is a learning
algorithm Lmin for the k-ary learning problem over some finite
relational structure B, that receives a training sequence T and
the degree of the structure ∆B as input, with the following
properties:
(1) The algorithm always returns a hypothesis H of the form

(φ∗(x̄ ; ȳ), v̄∗) for some first-order formula φ∗(x̄ ; ȳ) that
is a Boolean combination of sphere formulas with locality
radius smaller than (2w + 1)r and v̄∗ ∈ U(B)ℓ.

(2) If there are an FOCN(P)-formula φ(x̄ ; ȳ, κ̄) of binding
rank at most r and binding width at most w and parameter
tuples v̄ ∈ U(B)ℓ and λ̄ ∈ {0, . . . , |B|}|κ̄| such that
errT (Jφ(x̄ ; v̄, λ̄)KB) ⩽ ε then Lmin returns a hypothesis
(φ∗(x̄ ; ȳ), v̄∗) with errT (Jφ∗(x̄ ; v̄∗)KB) ⩽ ε.

(3) The algorithm runs in time (log n + t)O(1) · dpolylog(d)
with only local access to B, where n := |B|, d := ∆B
and t := |T |.

(4) The hypothesis returned by the algorithm can be evaluated
in time (log n+ t)O(1) · dpolylog(d) with only local access
to B.

Proof: The pseudocode for our algorithm is shown in
Figure 7. Let (φ∗(x̄ ; ȳ), v̄∗) be the hypothesis returned by
the algorithm. By construction we know that the hypothesis
satisfies (1).

Let φ(x̄ ; ȳ, κ̄) be a FOCN(P)-formula of binding width
at most w and binding rank at most r and some tu-
ples v̄ ∈ U(B)ℓ and λ̄ ∈ {0, . . . , |B|}|κ̄| of parame-
ters such that errT (Jφ(x̄ ; v̄, λ̄)KB) is minimal, especially
errT (Jφ(x̄ ; v̄, λ̄)KB) ⩽ ε for the input sequence T of training
examples.

Note that there is a ∆B-equivalent hnf-formula for φ
of locality radius smaller than (2w + 1)r − 1 and thus
NB

(2w+1)r−1(ūv̄) |= φ(ū, v̄, λ̄) iff B |= φ(ū, v̄, λ̄) for all
(ū, c) ∈ T . Furthermore note that NB

(2w+1)r−1(ūv̄
∗) |=

φ∗(ū, v̄∗) iff B |= φ∗(ū, v̄∗) for all (ū, c) ∈ T , because φ∗ is
a Boolean combination of sphere formulas of locality radius
smaller than (2w + 1)r. Let T ′ ⊆ T be the subsequence of
examples that are consistent with Jφ(x̄ ; v̄, λ̄)KB. For every
(ui, ci) in T let

posi := {j ∈ [t] | cj = 1 and

NB
(2w+1)r−1(ūiv̄)

∼= NB
(2w+1)r−1(ūj v̄)}

and

negi := {j ∈ [t] | cj = 0 and

NB
(2w+1)r−1(ūiv̄)

∼= NB
(2w+1)r−1(ūj v̄)}.

Algorithm Lmin
Input: Training sequence T = ((ū1, c1)), . . . , (ūt, ct)) ∈ T ,

d = ∆B, local access to background structure B
1: N ← NB

2ℓ[(2w+1)r−1](T )
2: consistentmax ← −1 ▷ maximal number of examples

consistent with a chosen formula
3: for all v̄ ∈ Nm, m ⩽ ℓ do
4: for i = 1, . . . , t do
5: Ni ← NB

(2w+1)r−1(ūiv̄)
6: ϑi(x̄ ; ȳ)← sphNi

(x̄ȳ) ▷ a d-bounded
[(2w + 1)r − 1]-type with k +m centers

7: for i = 1, . . . , t do
8: negi ← 0
9: posi ← 0

10: for all j = 1, . . . , t do
11: if Ni ∼= Nj then
12: if cj = 1 then
13: posi ← posi + 1
14: else
15: negi ← negi + 1

16: φ(x̄ ; ȳ)←
∨
i∈[t], posi⩾negi

ϑi(x̄ ; ȳ)
17: consistentcur ← |{i ∈ [t] | (posi ⩾ negi and ci =

1) or (posi < negi and ci = 0)}|
18: if consistentcur > consistentmax then
19: φ∗ ← φ
20: v̄∗ ← v̄
21: consistentmax ← consistentcur
22: return (φ∗(x̄ ; ȳ), v̄∗)

Figure 7. Learning algorithm Lmin of Theorem III.4

Claim 1. If (ui, 1) in T ′, then |posi| ⩾ |negi|.

Proof: Consider the formula

φ′(x̄ ; ȳ, κ̄) := φ(x̄ ; ȳ, κ̄) ∧ ¬sphNi
(x̄ȳ)

with Ni = NB
(2w+1)r−1(ūiv̄). We know that ci = 1 and thus

{(uj , cj) | j ∈ posi} = {(uj , 1) | j ∈ posi} ⊆ T ′ and
{(uj , cj) | j ∈ negi} ⊆ T \ T ′. The hypothesis Jφ′(x̄ ; v̄, λ̄)KB
is consistent with the examples

T ′ \ {(uj , cj) | j ∈ posi} ∪ {(uj , cj) | j ∈ negi}.

The cardinality of this set is |T ′| − |posi|+ |negi|. The claim
follows from the optimality of (φ, v̄, λ̄). ⌟

Claim 2. If (ui, 0) in T ′, then |negi| ⩾ |posi|.

Proof: The proof is analogous to the proof of the first
claim. Here we consider the formula

φ′(x̄ ; ȳ, κ̄) := φ(x̄ ; ȳ, κ̄) ∨ sphNi
(x̄ȳ)

and again use the optimality of (φ, v̄, λ̄). ⌟
When using v̄∗ = v̄, our algorithm constructs a formula that

is consistent with all examples (ui, 0) where |posi| < |negi|
and all examples (ui, 1) where |posi| ⩾ |negi|. Using both
claims we can follow that the hypothesis returned by the



algorithm is consistent with at least as many examples as the
optimal solution. This proves (2).

Analogous to Theorem I.1 there are at most (t+d)O(1) tuples
in

⋃ℓ
m=1N

m and N can be computed with only local access to
B in time (t+ d)O(1). The algorithm in Figure 7 can compute
all Ni and sphere formulas ϑi in time (log n + d + t)O(1).
The isomorphism tests can be done in time (log n+ t)O(1) ·
dpolylog(d)). All in all the running time of the algorithm is
in (log n+ t)O(1) · dpolylog(d). This shows that the algorithm
satisfies Condition (3).

To evaluate the formula returned by the algorithm for ū,
we only have to evaluate it using the structure NB

(2w+1)r−1(ū)
with only local access to B, so the running time is in (log n+
t)O(1) · dpolylog(d) and Condition (4) is satisfied.

IV. STRUCTURES OF BOUNDED DEGREE

In this section we consider structures of bounded degree.
We prove results that improve the running times we obtain
for structures of polylogarithmic degree and we also extend
these results to prove that there is a sublinear-time PAC-
learning algorithm for hypotheses using FOCN(P)-formulas on
structures of bounded degree. Let d ∈ N be fixed and let B be
a background structure with maximum degree at most d over
a relational signature σ.

As in Section III, let Φ be the set of FOCN(P)-formulas
φ(x̄ ; ȳ, κ̄) with binding width at most w, binding rank at most
r and free number variables κ̄, and

C := {Jφ(x̄ ; v̄, λ̄)KB | φ(x̄ ; ȳ, κ̄) ∈ Φ, v̄ ∈ U(B)ℓ,
λ̄ ∈ {0, . . . , |B|}|κ̄|}.

Let Φ∗ be the set of normalized formulas φ∗(x̄ ; ȳ) =∧
i

∨
j ψij(x̄, ȳ) where ψij are (possibly negated) sphere

formulas (modulo equivalence) with locality radius smaller
than (2w + 1)r for structures of degree at most d and

C∗ := {Jφ∗(x̄ ; v̄)KB | φ∗(x̄ ; ȳ) ∈ Φ∗, v̄ ∈ U(B)ℓ}.

Lemma IV.1. |Φ∗| is finite and does not depend on |B|.

Proof: There are at most νd(r) := 1+d ·
∑r−1
i=0 (d−1)i ⩽

dr+1+2r+1 elements in a ((2w+1)r−1)-type with a single
center [3]. Hence there are at most

E(d, k, ℓ, r, w) := (k + ℓ) · νd((2w + 1)r − 1)

⩽ (k + ℓ) · (d(2w+1)r + 2(2w + 1)r)

elements in a ((2w+1)r−1)-type with k+ℓ centers [3]. Thus
there are at most

F (d, k, ℓ, r, w, σ) :=
∏
R∈σ

2(E(d,k,ℓ,r,w)ar(R))

non-isomorphic ((2w + 1)r − 1)-types with k + ℓ centers.

φ∗ =
∧
i

∨
j

(¬)ψij︸ ︷︷ ︸
⩽2F (... )·2kk!︸ ︷︷ ︸

⩽22F (... )·2kk!︸ ︷︷ ︸
⩽22

2F (... )·2kk!

Hence the number of normalized formulas in Φ∗ is at most
22

2F (d,k,ℓ,r,w,σ)·2kk!

.

Lemma IV.2. |C| is finite and independent from |B|.

Proof: The set Φ∗ is finite and thus also C∗. For all
formulas in Φ there is a d-equivalent formula in Φ∗ and thus
C ⊆ C∗. Hence C is finite as well.

A. Consistent Hypotheses

As in Theorem I.1, we use brute force to learn a consistent
hypothesis. Instead of building a formula from the training
examples, we show that it suffices to use a formula from Φ∗.
This makes the complexity of the formula independent from
the number of training examples and thus we obtain a running
time for the evaluation of the hypothesis that is independent
from the number of training examples.

Corollary IV.3. Let T ∈ T be consistent with some C ∈ C.
Then there is a formula φ∗(x̄ ; ȳ) ∈ Φ∗ and a tuple v̄∗ ∈
NB

2ℓ[(2w+1)r−1](T )
ℓ such that Jφ∗(x̄ ; v̄∗)KB is consistent with

T .

Proof: Let φ∗(x̄ ; ȳ) and v̄∗ be as in Lemma III.1.
Then, after some normalization for φ∗, φ∗(x̄ ; ȳ) ∈ Φ∗,
v̄∗ ∈ NB

2ℓ[(2w+1)r−1](T )
ℓ and Jφ∗(x̄ ; v̄∗)KB is consistent with

T .
To check the consistency of a hypothesis, we use the

following model-checking result due to Grohe [19].

Definition IV.4. We say that a class C of structures has low
degree if for every ε > 0 there is an integer Nε such that for
all A ∈ C with |A| ⩾ Nε we have ∆A ⩽ |A|ε. ⌟

Theorem IV.5. There is an algorithm A for FO-MODEL-
CHECKING and a function f such that for every class C of
structures that has low degree and for every ε > 0 the running
time of A on an input (A, φ) ∈ C × FO is in O(f(∥φ∥) ·
|A|1+ε).

Using this result we obtain a model-learning algorithm with
an improved running time for hypothesis evaluation.

Theorem IV.6. Let d, k, ℓ, r, w ∈ N. Then there is a learning
algorithm Ldcon for the k-ary learning problem over some
finite relational structure B of degree at most d, that receives
a training sequence T as input, with the following properties:

(1) If the algorithm returns a hypothesis H , then H is of the
form (φ∗(x̄ ; ȳ), v̄∗) for some first-order formula φ∗(x̄ ; ȳ)
that is a Boolean combination of sphere formulas with
locality radius smaller than (2w + 1)r and v̄∗ ∈ U(B)ℓ,
and Jφ∗(x̄ ; v̄∗)KB is consistent with T .

(2) If there are an FOCN(P)-formula φ(x̄ ; ȳ, κ̄) of binding
rank at most r and binding width at most w and parameter
tuples v̄ ∈ U(B)ℓ and λ̄ ∈ {0, . . . , |B|}|κ̄| such that
Jφ(x̄ ; ȳ, λ̄)KB is consistent with the input sequence T ,
then Ldcon always returns a hypothesis.

(3) The algorithm runs in time (log n+ t)O(1) with only local
access to B, where n := |B| and t := |T |.



Algorithm Ldcon
Input: Training sequence T ∈ T , local access to background

structure B
1: N ← NB

2ℓ[(2w+1)r−1](T )

2: for all v̄∗ ∈ N ℓ do
3: for all φ∗(x̄ ; ȳ) ∈ Φ∗ do
4: consistent← true
5: for all (ū, c) ∈ T do
6: if (NB

(2w+1)r−1(ūv̄
∗) |= φ∗(ū ; v̄∗) and c = 0)

or (NB
(2w+1)r−1(ūv̄

∗) ̸|= φ∗(ū ; v̄∗) and c = 1) then
7: consistent← false
8: if consistent then
9: return (φ∗(x̄ ; ȳ), v̄∗)

10: reject

Figure 8. Learning algorithm Ld
con of Theorem IV.6

(4) The hypothesis returned by the algorithm can be evaluated
in time (log n)O(1) with only local access to B.

Proof: The pseudocode for our algorithm is shown
in Figure 8. The algorithm goes through all tuples v̄∗ ∈
NB

2ℓ[(2w+1)r−1](T )
ℓ and all formulas φ∗(x̄ ; ȳ) ∈ Φ∗ and

checks, whether Jφ∗(x̄ ; v̄∗)KB is consistent with T . The
algorithm returns the first consistent (φ∗, v̄∗) and rejects if there
is none. Note that NB

(2w+1)r−1 |= φ∗(ū ; v̄∗) iff B |= φ∗(ū ; v̄∗)
for all (ū, c) ∈ T , because φ∗ is a Boolean combination of
sphere formulas of locality radius smaller than (2w + 1)r.
Thus the algorithm satisfies Condition (1) of Theorem IV.6
and because of Corollary IV.3 it satisfies (2) as well.

Let n := |B| and t := |T |. Then for all ū ∈ U(B)k and
v̄∗ ∈ U(B)ℓ we have |NB

(2w+1)r−1(ūv̄
∗)| ⩽ (k+ℓ) ·2d(2w+1)r

and the representation size is (log n)O(1), because d, k, ℓ,
w and r are constant. Lemma IV.1 tells us that the number
of formulas in Φ∗ to check is constant. Thus for every real
valued function f it follows that maxψ∈Φ∗ f(∥ψ∥) is finite.
Hence according to Theorem IV.5 it takes time polynomial in
the size of NB

(2w+1)r−1(ūv̄
∗) to check whether the structure

satisfies a formula φ∗(ū ; v̄∗). The number of tuples in N ℓ is
|N |ℓ ⩽ (2tkd2ℓ(2w+1)r )ℓ ∈ tO(1) and N can be computed with
only local access to B in time tO(1) . All in all the running time
of the algorithm is in tO(1) · t · (log n)O(1) ⩽ (log n+ t)O(1).
This shows that the algorithm satisfies Condition (3).

To evaluate the formula returned by the algorithm for (ū, v̄),
we only have to evaluate it using the structure NB

(2w+1)r−1(ūv̄)

with only local access to B, so the running time is in (log n)O(1)

and Condition (4) is satisfied.

B. Minimizing the training error

Corollary IV.7. Let T ∈ T be such that errT (C) ⩽ ε for some
C ∈ C. Then there is a formula φ∗(x̄ ; ȳ) ∈ Φ∗ and a tuple
v̄∗ ∈ NB

2ℓ[(2w+1)r−1](T )
ℓ such that errT (Jφ∗(x̄, v̄∗)KB) ⩽ ε.

Proof: If errT (C) ⩽ ε, then there is some S ⊆ T
with |S| ⩾ (1 − ε) · |T | such that C is consistent with S.

Algorithm Ldmin
Input: Training sequence T ∈ T , local access to background

structure B
1: N ← NB

2ℓ[(2w+1)r−1](T )
2: errmin ← |T |+ 1
3: for all v̄∗ ∈ N ℓ do
4: for all φ∗(x̄ ; ȳ) ∈ Φ∗ do
5: errcur ← 0
6: for all (ū, c) ∈ T do
7: if (NB

(2w+1)r−1(ūv̄
∗) |= φ∗(ū ; v̄∗) and c = 0)

or (NB
(2w+1)r−1(ūv̄

∗) ̸|= φ∗(ū ; v̄∗) and c = 1) then
8: errcur ← errcur + 1

9: if errcur < errmin then
10: errmin ← errcur
11: φ∗

min ← φ∗

12: v̄∗min ← v̄∗

13: return (φ∗
min, v̄

∗
min)

Figure 9. Learning algorithm Ld
min of Theorem IV.8 and Theorem IV.10

Using Corollary IV.3 on S we obtain a formula φ∗(x̄ ; ȳ)
and a tuple v̄∗ ∈ NB

2ℓ[(2w+1)r−1](S)
ℓ ⊆ NB

2ℓ[(2w+1)r−1](T )
ℓ

such that Jφ∗(x̄, v̄∗)KB is consistent with S and thus
errT (Jφ∗(x̄, v̄∗)KB) ⩽ ε.

Theorem IV.8. Let d, k, ℓ, r, w ∈ N. Then there is a learning
algorithm Ldmin for the k-ary learning problem over some
finite relational structure B of degree at most d, that receives
a training sequence T as input, with the following properties:
(1) The algorithm always returns a hypothesis H of the form

(φ∗(x̄ ; ȳ), v̄∗) for some first-order formula φ∗(x̄ ; ȳ) that
is a Boolean combination of sphere formulas with locality
radius smaller than (2w + 1)r and v̄∗ ∈ U(B)ℓ.

(2) If there are an FOCN(P)-formula φ(x̄ ; ȳ, κ̄) of binding
rank at most r and binding width at most w and parameter
tuples v̄ ∈ U(B)ℓ and λ̄ ∈ {0, . . . , |B|}|κ̄| such that
errT (Jφ(x̄ ; v̄, λ̄)KB) ⩽ ε, then Ldmin returns a hypothesis
(φ∗(x̄ ; ȳ), v̄∗) with errT (Jφ∗(x̄ ; v̄∗)KB) ⩽ ε.

(3) The algorithm runs in time (log n+ t)O(1) with only local
access to B, where n := |B| and t := |T |.

(4) The hypothesis returned by the algorithm can be evaluated
in time (log n)O(1) with only local access to B.

Proof: The pseudocode for our algorithm is shown
in Figure 9. The algorithm goes through all tuples v̄∗ ∈
NB

2ℓ[(2w+1)r−1](T )
ℓ and all formulas φ∗(x̄ ; ȳ) ∈ Φ∗ and

counts the number of errors that Jφ∗(x̄ ; v̄∗)KB makes on T . The
algorithm returns the hypothesis with minimum error. Using
Corollary IV.7 one can show analogously to Theorem IV.6 that
(1) and (2) hold. The running-time analysis for (3) and (4) is
also analogous to the proof of Theorem IV.6.

C. Agnostic PAC Learning

We give a short introduction to probably approximately
correct (PAC) learning. For more background, we refer to [20].
Instead of focussing on the training error, we are now interested



in hypotheses that generalize well. We assume that there is
an (unknown) probability distribution D on U(B)k × {0, 1}
and that training examples are drawn independently from this
distribution. Our goal is to find an algorithm that with high
probability on training examples drawn from D, returns a
hypothesis that has a small expected error on instances drawn
from the same distribution D.

The generalization error of a hypothesis H : U(B)k →
{0, 1} for a probability distribution D on U(B)k × {0, 1} is

errD(H) := P
(ū,c)∼D

(H(ū) ̸= c).

A hypothesis class H is agnostic PAC-learnable if there is
some function tH : (0, 1)2 → N and a learning algorithm L
such that for every ε, δ ∈ (0, 1) and for every distribution D
over U(B)k×{0, 1}, when running the algorithm on a sequence
T of tH(ε, δ) examples drawn i.i.d. from D, it satisfies

P
T∼D

[
errD(L(T )) ⩽ inf

H∈H
errD(H) + ε

]
⩾ 1− δ.

We use the following lemma from [20] to bound the
generalization error.

Lemma IV.9 (Uniform Convergence). Let H be a finite
hypothesis class of hypotheses H : U(B)k → {0, 1} and
consider training sequences T of length

t ⩾ tUCH (ε, δ) :=

⌈
log(2|H|/δ)

2ε2

⌉
where the examples are drawn i.i.d. from a probability
distribution D over U(B)k × {0, 1}. Then

P
T∼Dt

[|errD(H)− errT (H)| ⩽ ε for all H ∈ H] ⩾ 1− δ.

Now we show that there is an agnostic PAC-learning algo-
rithm for hypotheses using FOCN(P)-formulas on background
structures of bounded degree.

Theorem IV.10. Let d, k, ℓ, r, w ∈ N. Then there is some
s ∈ N such that the learning algorithm Ldmin for the k-ary
learning problem over some finite relational structure B of
degree at most d has the following properties:
(1) The algorithm always returns a hypothesis H of the form

(φ∗(x̄ ; ȳ∗)) for some first-order formula φ∗(x̄ ; ȳ) that is
a Boolean combination of sphere formulas with locality
radius smaller than (2w + 1)r and v̄∗ ∈ U(B)ℓ such
that for an input sequence T of at least |T | =: t =

s
⌈
log(|B|/δ)

ε2

⌉
training examples it holds that

P
T∼Dt

[
errD(Jφ∗(x̄, v̄∗KB)−min

C∈C
errD(C) ⩽ ε

]
⩾ 1− δ.

(2) If |T | = s
⌈
log(|B|/δ)

ε2

⌉
, then the algorithm runs in time

(log |B|+1/ε+ log 1/δ)O(1) with only local access to B.
(3) The hypothesis returned by the algorithm can be evaluated

in time (log n)O(1) with only local access to B.

Proof: By Lemma IV.2, the hypothesis class H∗ := Φ∗ ×
U(B)ℓ is finite. Thus we can bound the generalization error of a

hypothesis H returned by Ldmin using the uniform convergence
Lemma IV.9 by

P
T∼Dt

[|errD(H)− errT (H)| ⩽ ε/2] ⩾ 1− δ/2

for input sequences T of length at least t =
⌈
log(4|H∗|/δ)

2(ε/2)2

⌉
=⌈

4 log |Φ∗|·ℓ·log(|B|/δ)
ε2

⌉
. Furthermore for all C ∈ C,

P
T∼Dt

[|errT (C)− errD(C)| ⩽ ε/2] ⩾ 1− δ/2

for input sequences T of length at least t =
⌈
log(4|C|/δ)
2(ε/2)2

⌉
⩽⌈

4 log(|Φ∗|/δ)
ε2

⌉
, because |C∗| ⩽ |Φ∗| and C ⊆ C∗. Using

Corollary IV.7 we know that errT (H) ⩽ errT (C) for all C ∈ C.
Thus for all C ∈ C

P
T∼Dt

[errD(H)− errD(C) ⩽ ε]

= P
T∼Dt

[errD(H)− errT (H) + errT (H)

− errT (C) + errT (C)− errD(C) ⩽ ε]

⩾ P
T∼Dt

[errD(H)− errT (H) ⩽ ε/2 and

errT (H) ⩽ errT (C) and errT (C)− errD(C) ⩽ ε/2]

= P
T∼Dt

[errD(H)− errT (H) ⩽ ε/2 and

errT (C)− errD(C) ⩽ ε/2]

⩾ P
T∼Dt

[|errD(H)− errT (H)| ⩽ ε/2 and

|errT (C)− errD(C)| ⩽ ε/2]

⩾ 1− δ.

This holds especially for C = argminC′∈C errD(C) and
hence (1) follows with s = 4ℓ · log |Φ∗|. The statements (2)
and (3) follow immediately from Theorem IV.8.

V. CONCLUSIONS

We prove that FOCN(P)-definable concepts over structures
of polylogarithmic degree can be learned in sublinear time.
For structures with no degree bound we show that there is no
consistent model-learning algorithm that runs in sublinear time
with only local access to the structure. Furthermore, we show
how to use a consistent parameter-learning algorithm to solve
q-CLIQUE.

It remains open whether one can obtain a similar result for
model learning and improve the lower bound on the running
time for consistent model-learning algorithms. Our results imply
PAC-learnability on structures of bounded degree. It would be
interesting to investigate structures of polylogarithmic degree
in this context.

In addition to the COUNT operator that we analyze within
the logic FOCN(P), another direction for future research is
the analysis of learning algorithms for stronger logics that
implement other aggregating operators from SQL.



REFERENCES

[1] M. Grohe and G. Turán, “Learnability and definability in trees and similar
structures,” Theory Comput. Syst., vol. 37, no. 1, pp. 193–220, 2004.

[2] M. Grohe and M. Ritzert, “Learning first-order definable concepts over
structures of small degree,” in 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017, pp. 1–12, IEEE Computer Society, 2017.

[3] D. Kuske and N. Schweikardt, “First-order logic with counting: At least,
weak hanf normal forms always exist and can be computed!,” CoRR,
vol. abs/1703.01122, 2017.

[4] M. Grohe and N. Schweikardt, “First-order query evaluation with
cardinality conditions,” in Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, Houston,
TX, USA, June 10-15, 2018 (J. V. den Bussche and M. Arenas, eds.),
pp. 253–266, ACM, 2018.

[5] M. Grohe, D. Neuen, and P. Schweitzer, “A faster isomorphism test for
graphs of small degree,” in 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018
(M. Thorup, ed.), pp. 89–100, IEEE Computer Society, 2018.
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