
D E S C R I P T I V E C O M P L E X I T Y O F L E A R N I N G

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

steffen van bergerem , master of science

aus Goch

Berichter: Professor Dr. Martin Grohe
Professor Dr. Sebastian Siebertz

Tag der mündlichen Prüfung: 10. März 2023

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Steffen van Bergerem: Descriptive Complexity of Learning
March 2023

A B S T R A C T

Supervised learning is a field in machine learning that strives to
classify data based on labelled training examples. In the Boolean
setting, each input is to be assigned to one of two classes, and there
are several fruitful machine-learning methods to obtain a classifier.
However, different algorithms usually come with different types of
classifiers, e. g. decision trees, support-vector machines, or neural
networks, and this is cumbersome for a unified study of the intrinsic
complexity of learning tasks.

This thesis aims at strengthening the theoretical foundations of
machine learning in a consistent framework. In the setting due to
Grohe and Turán (2004), the inputs for the classification are tuples
from a relational structure and the search space for the classifiers
consists of logical formulas. The framework separates the definition of
the class of potential classifiers (the hypothesis class) from the precise
machine-learning algorithm that returns a classifier. This facilitates
an information-theoretic analysis of hypothesis classes as well as a
study of the computational complexity of learning hypotheses from a
specific hypothesis class.

As a first step, Grohe and Ritzert (2017) proved that hypotheses
definable in first-order logic (FO) can be learned in sublinear time over
structures of small degree. We generalise this result to two extensions
of FO that provide data-aggregation methods similar to those in com-
monly used relational database systems. First, we study the extension
FOCN of FO with counting quantifiers. Then, we analyse logics that
operate on weighted structures, which can model relational databases
with numerical values. For that, we introduce the new logic FOWA,
which extends FO by weight aggregation. We provide locality results
and prove that hypotheses definable in a fragment of the logic can be
learned in sublinear time over structures of small degree.

To better understand the complexity of machine-learning tasks on
richer classes of structures, we then study the parameterised complex-
ity of these problems. On arbitrary relational structures and under
common complexity-theoretic assumptions, learning hypotheses defin-
able in pure first-order logic turns out to be intractable. In contrast
to this, we show that the problem is fixed-parameter tractable if the
structures come from a nowhere dense class. This subsumes numerous
classes of sparse graphs. In particular, we obtain fixed-parameter tract-
ability for planar graphs, graphs of bounded treewidth, and classes of
graphs excluding a minor.

iii

Z U S A M M E N FA S S U N G

Überwachtes Lernen ist ein Teilgebiet des maschinellen Lernens, in
dem Daten anhand von gelabelten Trainingsbeispielen klassifiziert
werden. Bei der Boole’schen Klassifikation werden die Eingaben in
zwei Kategorien einsortiert und es gibt mehrere effektive Lernmetho-
den, um einen Klassifikator zu erhalten. Unterschiedliche Methoden
liefern allerdings oft unterschiedliche Arten von Klassifikatoren, wie
z.B. Entscheidungsbäume, Support Vector Machines oder neurona-
le Netzwerke, was eine einheitliche Untersuchung der intrinsischen
Komplexität von Lernproblemen sehr erschwert.

Ziel dieser Dissertation ist ein Ausbau der theoretischen Grundlagen
des maschinellen Lernens innerhalb eines konsistenten formalen Rah-
mens. Im von Grohe und Turán (2004) eingeführten Modell sind die zu
klassifizierenden Eingaben Tupel aus einer relationalen Struktur und
der Suchraum für Klassifikatoren besteht aus logischen Formeln. Der
Ansatz trennt die Definition der Klasse von möglichen Klassifikatoren
(die Hypothesenklasse) vom konkreten Lernalgorithmus. Dies ermög-
licht eine informationstheoretische Analyse der Hypothesenklassen
sowie eine Untersuchung der Komplexität des Problems, Hypothesen
aus einer bestimmten Klasse zu lernen.

Grohe und Ritzert zeigten 2017, dass in Prädikatenlogik erster Stufe
(FO) definierbare Hypothesen in sublinearer Zeit auf Strukturen von
kleinem Grad lernbar sind. Wir verallgemeinern das Resultat auf zwei
FO-Erweiterungen, die Methoden zum Aggregieren von Daten liefern,
welche denen in relationalen Datenbanksystemen ähneln.

Zunächst untersuchen wir die Logik FOCN, die FO um Zählquan-
toren erweitert. Dann analysieren wir Logiken, die auf gewichteten
Strukturen operieren, welche numerische Werte in relationalen Daten-
banken modellieren können. Dazu führen wir die neue Logik FOWA
ein, welche FO um Methoden zur Gewichtsaggregation erweitert. Wir
präsentieren Lokalitätsergebnisse und zeigen, dass in einem Fragment
der Logik definierbare Hypothesen in sublinearer Zeit auf Strukturen
von kleinem Grad lernbar sind.

Um die Komplexität von Lernproblemen auf allgemeineren Struk-
turen besser zu verstehen, untersuchen wir dann die parametrisierte
Komplexität der Probleme. Unter weit verbreiteten komplexitätstheo-
retischen Annahmen stellt sich heraus, dass das Lernproblem für
FO-definierbare Hypothesen auf beliebigen relationalen Strukturen
nicht effizient lösbar ist. Im Gegensatz dazu zeigen wir, dass es auf
Klassen von Strukturen, die nirgends dicht (nowhere dense) sind, einen
im Sinne der parametrisierten Komplexität effizienten Algorithmus
für das Problem gibt. Dies umfasst zahlreiche Klassen von dünnen
Graphen, darunter planare Graphen, Graphen mit beschränkter Baum-
weite und Klassen von Graphen, die je einen Minoren ausschließen.

v

A C K N O W L E D G M E N T S

First and foremost, my sincere thanks go to my supervisor Martin
Grohe for his guidance and support. He gave me lots of freedom and
opportunities to grow as a researcher and he always had an open door
whenever I needed advice.

Furthermore, I am grateful to Nicole Schweikardt for inviting me
for a research visit to Berlin. I enjoyed the productive discussions and
pleasant atmosphere during my visit as well as the fruitful collabora-
tion with her.

Moreover, I would like to thank my colleagues during my time at i7.
I am particularly grateful to Sandra Kiefer for guiding me on my path
to the post-graduate academic world and for sharing her unchallenged
language skills. In addition, I want to thank Martin Ritzert for the
nice discussions in our shared office, including our quest for the ideal
office temperature, and Patrick Landwehr for always cheering me up
with his card tricks and his interesting maths and automata theory
challenges.

Finally, I am grateful to my parents for their continuous loving
support and belief in me.

vii

C O N T E N T S

1 Introduction 1

2 Preliminaries 7

2.1 General Notation and Definitions 7

2.2 Relational Structures . 7

2.3 Logics . 10

2.4 Locality of First-Order Logic 14

2.5 Parameterised Complexity 17

3 Learning First-Order Logic 21

3.1 Local Access and Complexity Measures 23

3.2 Consistent Parameter Learning 24

3.3 Consistent Model Learning 26

3.4 PAC Learning . 32

3.5 Related Work . 38

4 Learning Logics with Counting 41

4.1 Hanf Locality . 41

4.2 Learning Problems for FOCN 44

4.3 Structures of Bounded Degree 47

4.4 Structures of Small Degree 54

5 Weighted Structures and Logics with Weight Aggregation 61

5.1 First-Order Logic with Weight Aggregation 62

5.2 Feferman-Vaught Decompositions for FOW1 70

5.3 Gaifman Normal Form for FOW1 75

5.4 Localisation of FOWA1 78

6 Learning Logics with Weight Aggregation 89

6.1 Learning with Precomputation 89

6.2 Consistent Learning . 90

6.3 Agnostic PAC Learning 94

6.4 Learning FOWA1 . 96

7 Parameterised Complexity of Learning 101

7.1 Hardness of Learning . 103

7.2 Tractability of Empirical Risk Minimisation 104

7.3 Tractability of PAC Learning 115

8 Conclusion 119

Bibliography 121

ix

1
I N T R O D U C T I O N

Descriptive complexity theory studies links between the computational
and the descriptive complexity of (computational) problems. That is, it
analyses how the computational resources needed to solve a problem
are linked to the richness of a language needed to define the problem
[50, 65]. The inputs of the problems are usually modelled as finite
relational structures, and the problems are defined using logics.

We adapt this approach to machine-learning problems, where the
task is to learn an unknown target function from given input-output
pairs. We explore links between the computational complexity of
learning certain functions and the descriptive complexity of these
functions, i. e., the logics needed to define the functions we want to
learn.

In the following, we introduce the complexity-theoretic background.
Then, we present the machine-learning framework that we consider in
this thesis, and we review known results for it. The chapter concludes
with an outline of the thesis as well as a discussion of the scientific
contribution.

descriptive complexity theory

In 1974, Fagin initiated the field of descriptive complexity theory
with his groundbreaking result [35], which states that the complexity
class NP consists of exactly those problems that can be defined in
existential second-order logic. In 1980, Chandra and Harel [24] raised
the question whether there is a “natural” query language for relational
databases that is able to express precisely those queries that can be
evaluated in polynomial time. Gurevich [59] restated this question
in terms of logics, asking whether there is a logic that captures the
complexity class P. Immerman [64] and Vardi [92] both gave a partial
answer by showing that least fixed-point logic (LFP) captures P over
ordered structures. Although there have been several extensions of
this result, it is still open whether there is a logic for P on arbitrary
finite relational structures.

While descriptive complexity theory yields powerful completeness
results, which show that all problems from a certain complexity class
can be expressed in a certain logic, the algorithmic insights obtained
from these results are usually limited [49]. In contrast to this, Cour-
celle’s Theorem [26] does not claim completeness. It states that every
property of graphs definable in monadic second-order logic can be
decided in linear time on graphs of bounded treewidth. More formally,

1

2 introduction

for every sentence φ in monadic second-order logic and every class C

of graphs of bounded treewidth, the model-checking problem for φ on C

can be decided in linear time. That is, it can be checked in linear time
in the size of the input graph whether G |= φ holds, i. e., whether an
input graph G from the class C is a model of φ. Therefore, Courcelle’s
Theorem is actually a meta-theorem, yielding an efficient algorithm
for every property-defining sentence and every class of graphs of
bounded treewidth. A more recent example of an algorithmic meta-
theorem is a result due to Grohe, Kreutzer, and Siebertz [52], which
shows that every graph property definable in first-order logic can be
decided in almost linear time on nowhere dense graph classes.

For a more refined complexity-theoretic analysis of model-checking
problems, we measure the running time of algorithms not only in
the size of the input structure, but also in terms of the length of a
logical sentence that defines the property we are supposed to check.
The length of such a sentence is usually small compared to the size of
the input structure. Thus, when studying model-checking problems,
it makes sense to relax the classical notion of tractability and allow for
a non-polynomial running time in terms of the length of the sentence,
while the dependence in terms of the size of the input structure
still needs to be polynomial. More formally, for a sentence φ and a
relational structure A, we look for cases in which the model-checking
problem can be decided in time f(|φ|) · p(|A|), where f : N → N is
some computable function, p is a polynomial, and |φ| and |A| are the
length of the sentence and the size of the structure, respectively. As a
matter of fact, the model-checking results [26, 52] actually show this
relaxed version of tractability, called fixed-parameter tractability.

learning logics

We study the descriptive complexity of Boolean classification problems
in the framework introduced by Grohe and Turán in 2002 [57]. In these
problems, we are given a sequence of labelled tuples from a relational
structure, where the labels are Boolean-valued. The goal is to return
a function, called a hypothesis or a concept, which is consistent with
(almost all of) the labels given in the examples and, ideally, can also
be used to predict the labels of so far unseen instances. In machine
learning, this problem falls into the category of supervised learning
tasks: we want to learn a function from given input-output pairs. In
contrast to this, in unsupervised learning (e. g. clustering tasks), the
goal is to learn patterns from unlabelled data [85].

We require our algorithms to return a hypothesis from a predefined
hypothesis class. In their work [57], Grohe and Turán give information-
theoretic learnability results for hypothesis classes that can be defined
using first-order and monadic second-order logic on restricted classes

introduction 3

of relational structures, such as the class of planar graphs or graphs of
bounded degree.

Algorithmic aspects of the framework, including the running time
of a learning algorithm, were first studied by Grohe and Ritzert in [55],
which forms the basis for our research. They showed that concepts
definable in first-order logic can be learned in sublinear time on
structures of small degree. We describe these results in more detail
in Chapter 3. Analogous results have been obtained for monadic
second-order logic by Grohe, Löding, and Ritzert [53] on strings and
by Grienenberger and Ritzert [47] on trees.

Several problems related to the one we consider have been studied.
This includes the framework of inductive logic programming (ILP)
[25, 28, 66, 76, 77] and, in the database literature, various approaches
to learning queries from examples [1, 5, 9, 10, 15, 16, 20, 61, 63, 67, 86,
87]. We give an overview of related work in Section 3.5.

objectives and outline

We aim at extending the theoretical foundations of machine learning
in the aforementioned framework [57] in two directions.

First, we want to generalise the results for first-order logic [55] to
extensions that provide data-aggregation methods similar to those in
commonly used relational database systems. Such database systems
usually allow counting of selected entries in the database. Therefore,
we study extensions of first-order logic with counting quantifiers.
Moreover, databases often include numerical values, which can be
aggregated when querying data from the database. To account for
that, we consider logics over weighted structures, an extension of
ordinary relational structures, which enable us to explicitly model
numerical values in a database. The logics provide different methods
to aggregate these values.

To gain more insights about the complexity of machine-learning
tasks on richer classes of structures, our second objective for this thesis
is to find logics and classes of structures with fixed-parameter tractable
machine-learning problems. In the spirit of Grohe’s, Kreutzer’s, and
Siebertz’s aforementioned first-order model-checking result [52], we
analyse the parameterised complexity of learning first-order logic,
and we identify classes of structures with a fixed-parameter tractable
learning problem.

This thesis is structured as follows.
In Chapter 2, we introduce the relevant logics, discuss locality results

for first-order logic, and give a short introduction into parameterised
complexity.

In Chapter 3, we formally introduce the learning framework. To
exemplify it, we discuss the results Grohe and Ritzert [55] obtained for
learning first-order logic on structures of small degree. We complement

4 introduction

them with negative (i. e., non-learnability) results, some of which have
been published in [11]. At the end of the chapter, we give an overview
of related work regarding the learning framework.

We generalise the results of [55] to the extension FOCN of first-order
logic with counting quantifiers in Chapter 4. After discussing locality
results for FOCN, we show in Section 4.3 that concepts definable in
FOCN can be learned in sublinear time over classes of structures of
bounded degree. In Section 4.4, we extend this to classes of structures
of unbounded but still small degree.

In Chapters 5 and 6, we generalise the learnability results of [55] to
weighted structures, which extend ordinary relational structures by
assigning weights to tuples present in the structure. Such weighted
structures were recently considered by Toruńczyk [88], who studied
the complexity of query evaluation on these structures. Inspired by
commonly used relational database systems, we consider enriched
hypothesis classes, which include different methods to aggregate the
numerical values. For that, in Chapter 5, we introduce a new logic,
called first-order logic with weight aggregation (FOWA). In the remainder
of the chapter, we provide locality results for fragments of this logic,
including Feferman-Vaught decompositions and a Gaifman normal
form. In Chapter 6, we use those to prove that concepts definable in
a fragment of FOWA can be learned in sublinear time on weighted
structures of small degree.

To analyse learning problems on richer classes of structures, we
study the parameterised complexity of learning logics in Chapter 7.
In Section 7.1, we show that learning concepts definable in first-order
logic is AW[∗]-hard in general. Under common complexity-theoretic
assumptions, this means that the problem is not fixed-parameter
tractable. In Sections 7.2 and 7.3, we identify tractable cases of the
problem and show that it is fixed-parameter tractable on nowhere
dense graph classes.

We conclude this thesis in Chapter 8 with a summary of the contents
and a discussion of potential directions for future work.

personal contribution

Apart from explicitly cited results, this thesis contains only research
results to which I contributed significantly. It is based on the following
publications.

[11] Steffen van Bergerem. ‘Learning Concepts Definable in First-
Order Logic with Counting’. In: 34th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019

[13] Steffen van Bergerem and Nicole Schweikardt. ‘Learning Con-
cepts Described By Weight Aggregation Logic’. In: 29th EACSL

introduction 5

Annual Conference on Computer Science Logic, CSL 2021, Ljubljana,
Slovenia (Virtual Conference), January 25-28, 2021

[12] Steffen van Bergerem, Martin Grohe and Martin Ritzert. ‘On
the Parameterized Complexity of Learning First-Order Logic’.
In: PODS 2022: International Conference on Management of Data,
Philadelphia, PA, USA, June 12-17, 2022

In the following, I describe my contribution towards the publications.
The first publication [11] is a single-author paper written by myself.

It is mainly based on [55], which introduces the algorithmic framework
we consider in this thesis, and on [69], which introduces the logic
FOCN and provides the necessary locality results for this logic. While
the basic structure of the learnability proofs might appear reminiscent
of the one in [55], new obstacles had to be overcome due to the
fact that the locality results for first-order logic used in [55] do not
apply to the logic FOCN. Especially the generalisation of the results
from structures of bounded degree to structures of unbounded but
small degree required new techniques. The paper [11] also provides
non-learnability results, which are included in Chapter 3 of this thesis.

The publication [13] is joint work with Nicole Schweikardt, which
started during a research visit in Berlin. In numerous research meet-
ings, we commonly designed the logic FOWA and its fragments FOWA1
and FOW1. It is based on weighted structures, which Toruńczyk con-
sidered in [88], and the logic FOC1, which Grohe and Schweikardt
introduced in [56]. In the initial design phase, I worked on the ap-
plicability of the logic in machine-learning scenarios as well as the
locality properties needed for the learnability results, while Nicole
Schweikardt focused on the features of the logic needed to obtain
the locality results. After we had worked out the design of the logic,
I developed the learnability results, i. e., the contents presented in
Chapter 6 of this thesis, and the main ideas for application scenarios.
Furthermore, I also proved a consequence of the Feferman-Vaught
result, which we use in the proof regarding the Gaifman normal form
(see Corollary 5.9).

The third publication [12] is joint work with Martin Grohe and
Martin Ritzert. The ideas for the hardness result evolved over a series
of group discussions, while the final statement is due to Martin Grohe.
Together with Martin Ritzert, I worked on the formalisation and
presentation of the result. The two smaller tractability results (Propos-
itions 7.3 and 7.4) are mostly due to Martin Ritzert, while I helped
with the formalisation. The proof sketch for the main tractability result
(Theorem 7.5) is due to Martin Grohe. I formalised and completed the
proof.

2
P R E L I M I N A R I E S

2.1 general notation and definitions

We let R, Q, Z, N, and N⩾1 denote the sets of reals, rationals, integers,
non-negative integers, and positive integers, respectively. Form,n ∈ Z,
we let [m,n] := {ℓ ∈ Z | m ⩽ ℓ ⩽ n} and [n] := [1,n].

For a k-tuple v̄ = (v1, . . . , vk), we write |v̄| to denote its length k. We
denote the empty tuple, i. e. the tuple of length 0, by (). The cardinality
or size of a set S is the number of elements it contains and we denote
it by |S|. We denote the power set of a set S by 2S. Furthermore, for
every k ∈N, we write

(
S
k

)
for set of all k-element subsets of S. Groups and rings

A group (G, ◦) is a set G equipped with a binary operator ◦ : G×G→
G that is associative (i. e. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a,b, c ∈ G)
and has a neutral element eG ∈ G (i. e. a ◦ eG = eG ◦ a = a for all
a ∈ G) such that each a ∈ G has an inverse a ′ ∈ G (i. e. a ◦ a ′ =

a ′ ◦ a = eG); we write a−1 for this a ′. A group is abelian if ◦ is
commutative (i. e. a ◦ b = b ◦ a for all a,b ∈ G). A ring (R,+, ·) is a set
R equipped with two binary operators + (addition) and · (multiplication)
such that (R,+) is an abelian group with neutral element 0R ∈ R, · is
associative and has a neutral element 1R ∈ R, and multiplication is
distributive with respect to addition, i. e. a · (b+ c) = (a · b) + (a · c)
and (a+b) · c = (a · c) + (b · c) for all a,b, c ∈ R. A ring is commutative
if · is commutative.

2.2 relational structures

A (relational) signature is a finite set of relation symbols. Every relation
symbol R has an arity ar(R) ∈ N. Let σ be a signature. A (relational)
structure A over σ, also called a σ-structure, is a tuple consisting of a
finite set U(A), the universe of A, and a relation R(A) ⊆

(
U(A)

)ar(R)

for every R ∈ σ. The size of A is |A| := |U(A)|. Expansion, reduct

Let σ ′ ⊇ σ be a signature. A σ ′-structure A ′ is a σ ′-expansion of a
σ-structure A if U(A ′) = U(A) and R(A ′) = R(A) for all R ∈ σ. If A ′

is a σ ′-expansion of the σ-structure A, then A is the σ-reduct of A ′.
A σ-structure B is a substructure of a σ-structure A if U(B) ⊆ U(A) Substructure

and R(B) ⊆ R(A) for every R ∈ σ. For a set X ⊆ U(A), the induced
substructure of A on X is the σ-structure A[X] with universe U(A[X]) = X
and R(A[X]) = R(A)∩Xar(R) for every relation symbol R ∈ σ. Union, intersection

The union of two σ-structures A and B is the σ-structure A ∪B

with universe U(A ∪B) = U(A) ∪U(B) and relations R(A ∪B) =

R(A) ∪ R(B) for all R ∈ σ. If U(A) ∩ U(B) = ∅, we call A ∪B the

7

8 preliminaries

disjoint union of A and B and denote it by A⊎B. Let σ ′ := σ∪ {X, Y}
for two new unary relation symbols X and Y that do not belong to
σ. If U(A) ∩U(B) = ∅, then the disjoint sum of A and B is the σ ′-
expansion A⊕B of the disjoint union A⊎B with X(A⊕B) = U(A)

and Y(A⊕B) = U(B). The intersection of two σ-structures A and B

is the σ-structure A∩B with universe U(A∩B) = U(A)∩U(B) and
relations R(A∩B) = R(A)∩ R(B) for all R ∈ σ.Graphs

A graph is relational structure with signature {E} where E is a binary
relation symbol. The universe of a graph G is called the vertex set
of G and is often denoted by V(G); the relation E(G) is called the
edge set of G. The elements of the vertex set are called vertices and
the elements of the edge set are called edges. All graphs in this thesis
are undirected and do not contain self-loops, i. e. E is symmetric and
irreflexive. A unary relation symbol is called a colour. A (σ-)coloured
graph is a σ-expansion of a graph where σ is a signature with E ∈ σ
and all other relation symbols in σ are colours.

Let G be a (coloured) graph. If (v,w) ∈ E(G), then we say that v
and w are neighbours, v and w are incident to (v,w), and v and w

are adjacent. The degree deg(v) of a vertex v ∈ V(G) is the number of
neighbours of v and the degree deg(G) of G is the maximum degree
of its vertices.

For n ∈N, a path of length n in G is a sequence v0, . . . , vn of distinct
vertices in V(G) such that (vi, vi+1) ∈ E(G) for all i ∈ [0,n− 1]. We
say that v0, . . . , vn is a path from v0 to vn in G. If G is non-empty and
there is a path from v to w for all v,w ∈ V(G), then we say that G is
connected. A connected component of G is an inclusion-wise maximal
connected induced substructure of G.Distance,

neighbourhood The distance distG(v,w) between two vertices v,w ∈ V(G) is the
minimal length of a path from v tow in G; if no such path exists, we set
distG(v,w) := ∞. For a tuple v̄ = (v1, . . . , vk) ∈

(
V(G)

)k and a vertex
w ∈ V(G), we let distG(v̄,w) := mini∈[k] distG(vi,w). For a tuple w̄ =

(w1, . . . ,wℓ) ∈
(
V(G)

)ℓ, we set distG(v̄, w̄) := minj∈[ℓ] distG(v̄,wj).

For r ∈N and a tuple v̄ ∈
(
V(G)

)k for some k ∈N, the ball of radius
r (or r-ball) of v̄ in G is the set NGr (v̄) := {w ∈ V(G) | distG(v̄,w) ⩽ r}.
The neighbourhood of radius r (or r-neighbourhood) of v̄ inG is the induced
substructure NGr (v̄) := G[NGr (v̄)]. Let C1, . . . ,Ck be new colours not
used in G. The sphere of radius r (or r-sphere) of v̄ in G is the structure
SGr (v̄) that is the expansion of NGr (v̄) by the colours C1, . . . ,Ck with
Ci(S

G
r (v̄)) = {vi} for all i ∈ [k].

Fact 2.1. Let G be a graph, v̄ = (v1, . . . , vk) ∈
(
V(G)

)k for some k ∈ N

with k ⩾ 2, and let r ∈ N. The neighbourhood NA
r (v1, v2) is connected if

and only if distG(v1, v2) ⩽ 2r+1. Furthermore, if NGr (v̄) is connected, then
NGr (v̄) ⊆ NGr+(k−1)(2r+1)(vi) for every i ∈ [k].

Gaifman graph
The Gaifman graph GA of a σ-structure A is the graph with vertex set

V(GA) = U(A) and edge set E(GA) that contains exactly those pairs

2.2 relational structures 9

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure 2.1: Illustration of classes of sparse graphs by Felix Reidl1.

of distinct vertices a,b ∈ U(A) that appear in the same tuple of some
relation of A, i. e. where a,b ∈ v̄ for some v̄ ∈ R(A) and R ∈ σ.

We can generalise the graph-theoretic notions such as degree, paths,
connectivity, distance, and balls from (coloured) graphs to general re-
lational structures by applying the definitions to the corresponding
Gaifman graphs. Using the generalised notion of balls, the notions of
neighbourhoods and spheres also naturally generalise from (coloured)
graphs to general relational structures.

2.2.1 Nowhere Dense Classes

In 2008, Nešetřil and Ossona de Mendez [78–80] introduced the notion
of nowhere dense graph classes. This generalises different formalisations
of classes of sparse graphs such as the class of planar graphs, classes
of bounded degree, classes of bounded treewidth, or classes of graphs
excluding a minor. See Figure 2.1 for an overview of these classes
of structures. As we will see in Section 2.5, the notion of nowhere
denseness has become a central criterion for tractability of several
problems in parameterised complexity theory.

There are various, seemingly unrelated, equivalent characterisations
of nowhere dense graph classes. In this thesis, we use a characterisation
due to Grohe, Kreutzer, and Siebertz [52] via the so-called splitter game. Splitter game

1 http://www-lti.informatik.rwth-aachen.de/~reidl/

(Date accessed: 2022-08-31)

http://www-lti.informatik.rwth-aachen.de/~reidl/

10 preliminaries

Let G be a graph and ℓ, r ∈ N⩾1. The (ℓ, r)-splitter game on G is
played by two players called Connector and Splitter. The game is played
in a sequence of at most ℓ rounds. We let G0 := G. In round i+ 1 of the
game, Connector chooses a vertex vi+1 ∈ V(Gi). Then, Splitter chooses
a vertex wi+1 ∈ NGir (vi+1). We let Gi+1 := Gi

[
NGir (vi+1) \ {wi+1}

]
.

If Gi+1 is the empty graph, i. e. V(Gi+1) = ∅, then Splitter wins the
game. Otherwise, the game continues. If Splitter has not won after ℓ
rounds, Connector wins.

A strategy for Splitter in the (ℓ, r)-splitter game on G is a function f
that associates a move wi+1 ∈ NGir (vi+1) for Splitter to every partial
play (v1,w1, . . . , vi,wi) with associated graphs G0, . . . ,Gi and move
vi+1 ∈ V(Gi) by Connector. A strategy is a winning strategy for Splitter
in the (ℓ, r)-splitter game on G if Splitter wins every play in which
they follow the strategy f. For a class C of graphs and a function
λ : N⩾1 →N⩾1, we say that Splitter wins the λ-splitter game on C if for
every r ∈N⩾1 and every graph G ∈ C, Splitter has a winning strategy
in the (λ(r), r)-splitter game on G.Nowhere dense

Definition 2.2 (Nowhere dense class). A class C of graphs is nowhere
dense if there is a function λ : N⩾1 →N⩾1 such that Splitter wins the
λ-splitter game on C. The class C is effectively nowhere dense if λ is
computable. A class C of relational structures is (effectively) nowhere
dense if the class of Gaifman graphs of all structures in C is (effectively)
nowhere dense.

2.3 logics

In this section, we recapitulate the syntax and semantics of first-order
logic as well as its extensions by counting and numerical predicates
that we study in this thesis.

Throughout this section, let σ be a relational signature. Let vars
and nvars be fixed, disjoint, and countably infinite sets of structure
variables and number variables, respectively. In the logics described in
this section, structure variables from vars denote elements from the
structure and number variables from nvars denote integers.Interpretation

A σ-interpretation I = (A,β) consists of a σ-structure A and an
assignment β : vars ∪ nvars → U(A) ∪Z with β(x) ∈ U(A) for every
x ∈ vars and β(κ) ∈ Z for every κ ∈ nvars. For k, ℓ ∈ N, k distinct
structure variables x1, . . . , xk ∈ vars, elements v1, . . . , vk ∈ U(A), ℓ dis-
tinct number variables κ1, . . . , κℓ ∈ nvars, and integers n1, . . . ,nℓ ∈ Z,
we write Iv1,...,vk

x1,...,xk
n1,...,nℓ
κ1,...,κℓ

for the interpretation (A,βv1,...,vk
x1,...,xk

n1,...,nℓ
κ1,...,κℓ

),
where βv1,...,vk

x1,...,xk
n1,...,nℓ
κ1,...,κℓ

is the assignment β ′ with β ′(xi) = vi for
every i ∈ [k], β ′(κj) = nj for every j ∈ [ℓ], and β ′(z) = β(z) for all
z ∈ (vars∪ nvars) \ {x1, . . . , xk, κ1, . . . , κℓ}.First-order logic

(FO)
Definition 2.3 (FO[σ]). The set of formulas for FO[σ] is built according
to the following rules.

2.3 logics 11

(1) x1=x2 and R(x1, . . . , xk) are formulas for x1, x2, . . . , xk ∈ vars and
R ∈ σ with ar(R) = k.

(2) If φ and ψ are formulas, then ¬φ and (φ∨ψ) are also formulas.

(3) If φ is a formula and x ∈ vars, then ∃xφ is a formula.

Let I = (A,β) be a σ-interpretation. For a formula φ from FO[σ], the
semantics JφKI ∈ {0, 1} is defined as follows.

(1) Jx1=x2K
I = 1 if β(x1) = β(x2), and Jx1=x2K

I = 0 otherwise;
JR(x1, . . . , xk)K

I = 1 if
(
β(x1), . . . ,β(xk)

)
∈ R(A), and

JR(x1, . . . , xk)K
I = 0 otherwise.

(2) J¬φKI = 1− JφKI and J(φ∨ψ)K = max{JφKI , JψKI}.

(3) J∃xφKI = max{JφKI
v
x | v ∈ U(A)}.

The quantifier rank qr(φ) of an FO[σ]-formula φ is the maximum
nesting depth of constructs using rule (3) in order to construct φ. We
write (φ∧ψ) and ∀xφ as shorthands for ¬(¬φ∨¬ψ) and ¬∃x¬φ.

Next, we consider the logic FOC(P) that Kuske and Schweikardt
introduced in [69]. This logic allows building numerical statements
based on counting terms as well as numerical predicates.

A numerical predicate collection is a triple (P, ar, J.K) where P is a
countable set of predicate names, and, to each P ∈ P, ar assigns an arity
ar(P) ∈N⩾1 and J.K assigns a semantics JPK ⊆ Zar(P). For the remainder
of this section, fix a numerical predicate collection (P, ar, J.K). FOC

Definition 2.4 (FOC(P)[σ]). The sets of formulas and counting terms for
FOC(P)[σ] are built according to the rules (1)–(3) and the following
rules.

(4) If φ is a formula and x̄ = (x1, . . . , xk) is a tuple of k pairwise
distinct variables, then #x̄.φ is a counting term.

(5) Every integer i ∈ Z is a counting term.

(6) If t1 and t2 are counting terms, then (t1 + t2) and (t1 · t2) are also
counting terms.

(7) If P ∈ P, m = ar(P) and t1, . . . , tm are counting terms, then
P(t1, . . . , tm) is a formula.

Let I = (A,β) be a σ-interpretation. For a formula or counting term
ξ from FOC(P)[σ], the semantics JξKI is defined by the rules (1)–(3)
and the following rules.

(4) J#x̄.φKI =
∣∣∣{(v1, . . . , vk) ∈

(
U(A)

)k ∣∣ JφKI
v1 ,...,vk
x1 ,...,xk = 1

}∣∣∣,
where x̄ = (x1, . . . , xk).

12 preliminaries

(5) JiKI = i for i ∈ Z.

(6) J(t1 + t2)K
I = Jt1K

I + Jt2K
I and J(t1 · t2)KI = Jt1K

I · Jt2KI.

(7) JP(t1, . . . , tm)KI = 1 if (Jt1K
I , . . . , JtmKI) ∈ JPK,

and JP(t1, . . . , tm)KI = 0 otherwise.

For counting terms t1 and t2, we write (t1 − t2) as a shorthand for(
t1 + ((−1) · t2)

)
.

Finally, we describe the logic FOCN(P) introduced by Kuske and
Schweikardt in [69] that includes number variables as well as quanti-
fication over numbers.FOCN

Definition 2.5 (FOCN(P)[σ]). The sets of formulas and counting terms for
FOCN(P)[σ] are built according to the rules (1)–(7) and the following
rules.

(8) Every number variable κ ∈ nvars is a counting term.

(9) If φ is a formula and κ ∈ nvars is a number variable, then ∃κφ is
a formula.

Let I = (A,β) be a σ-interpretation. For a formula or counting term
ξ from FOCN(P)[σ], the semantics JξKI is defined by the rules (1)–(6)
and the following rules.

(8) JκKI = β(κ) for κ ∈ nvars.

(9) J∃κφKI = max
{
JφKI

n
κ
∣∣ n ∈ [0, |A|]

}
.

An expression is a formula or a counting term. Let ξ be an expression.
The set vars(ξ) is the set of all variables in vars that occur in ξ. The
set nvars(ξ) is defined analogously. The free variables free(ξ) of ξ are
inductively defined as follows.

(1) free(x1=x2) = {x1, x2} and free
(
R(x1, . . . , xk)

)
= {x1, . . . , xk}.

(2) free(¬φ) = free(φ) and free(φ∨ψ) = free(φ)∪ free(ψ).

(3) free(∃xφ) = free(φ) \ {x} for x ∈ vars.

(4) free
(
#(x1, . . . , xk).φ

)
= freeφ \ {x1, . . . , xk}.

(5) free(i) = ∅ for i ∈ Z.

(6) free
(
(t1 + t2)

)
= free

(
(t1 · t2)

)
= free(t1)∪ free(t2).

(7) free
(
P(t1, . . . , tm)

)
=

⋃m
i=1 free(ti).

(8) free(κ) = {κ} for κ ∈ nvars.

(9) free(∃κφ) = free(φ) \ {κ} for κ ∈ nvars.

2.3 logics 13

We write ξ(z1, . . . , zk) to indicate that free(ξ) ⊆ {z1, . . . , zk}. A sen-
tence is a formula without free variables and a ground term is a counting
term without free variables. Binding rank,

binding widthThe binding rank br(ξ) of ξ is the maximal nesting depth of con-
structs using rules (3) and (4), i. e. constructs of the form ∃x or #x̄, to
construct ξ. The binding width bw(ξ) of ξ is the maximal arity of an
x̄ of a term #x̄.ψ in ξ. If ξ contains no such term, then bw(ξ) = 1 if ξ
contains a quantifier ∃x with x ∈ vars, and bw(ξ) = 0 otherwise.

For a formula φ and a σ-interpretation I, we write I |= φ to indicate
that JφKI = 1. Likewise, I ̸|= φ indicates that JφKI = 0. For a formula
φ, a σ-structure A, and a tuple v̄ = (v1, . . . , vk) ∈

(
U(A)

)k, we write
A |= φ[v̄] or (A, v̄) |= φ to indicate that (A,β) |= φ for all assignments β
with β(xi) = vi for all i ∈ [k]. Furthermore, we set Jφ(v̄)KA := 1 if A |=

φ[v̄], and Jφ(v̄)KA := 0 otherwise. Two expressions ξ, ξ ′ are equivalent if
JξKI = Jξ ′KI for all σ-interpretations I. For d ∈N, the expressions are
called d-equivalent if JξKI = Jξ ′KI for all σ-interpretations I = (A,β)
for all structures A of degree at most d. The length |ξ| of an expression
ξ is the length of its encoding.

Example 2.6. Let G be a graph and let σ = {E} and P = {P=}, where P=

is the numerical predicate with JP=K = {(k,k) | k ∈ Z}. We consider
the FOCN(P)[σ]-sentence

φ = ∃κ∀xP=

(
#(y).E(x,y), κ

)
.

The sentence has binding rank 2 and binding width 1. The sentence
holds in G (i. e. G |= φ holds) if and only if G is a regular graph, i. e., if
there is some k ∈N such that every vertex in G has degree k. The same
statement can be expressed via the equivalent FOC(P)[σ]-sentence

ψ = ∀x∀yP=

(
#(z).E(x, z), #(z).E(y, z)

)
.

The sentence ψ has binding rank 3 and binding width 1.
Types

Let A be a σ-structure and let v̄ = (v1, . . . , vk) ∈
(
U(A)

)k for some
k ∈N⩾1. For a set of formulas Φ over the signature σ, the Φ-type of v̄
(in A) is the set tpA

Φ(v̄) :=
{
φ(x1, . . . , xk) ∈ Φ

∣∣ A |= φ[v̄]
}

. For q ∈N,
let FO[σ,q] denote the set of all formulas in FO[σ] with quantifier rank
at most q. The q-type of v̄ (in A) is the set tpA

q(v̄) := tpA
FO[σ,q](v̄). A

k-variable q-type (of signature σ) is a set Ψ of FO[σ,q]-formulas whose
free variables are among x1, . . . , xk.

Fact 2.7. Up to equivalence, there are only finitely many FO[σ,q]-formulas
φ with free(φ) ⊆ {x1, . . . , xk}.

Formally, we can syntactically define a normal form for all σ,k,q
such that there are only finitely many FO[σ,q]-formulas in this normal
form with free variables among x1, . . . , xk. Furthermore, there is an
algorithm that transforms every formula into an equivalent formula in

14 preliminaries

normal form without increasing the quantifier rank. This allows us to
view k-variable q-types as finite sets of formulas in normal form. We
denote the set of all k-variable q-types of signature σ by Tp[σ,k,q].

Fact 2.8. For every FO[σ,q]-formula φ(x1, . . . , xk), there is a set Φ ⊆
Tp[σ,k,q] such that for all σ-structures A and all v̄ ∈

(
U(A)

)k,

A |= φ[v̄] ⇐⇒ tpA
q(v̄) ∈ Φ.

Before we discuss some of the locality properties of first-order logic
in Section 2.4, we lastly consider the fragment FOC1(P) of FOC(P)

introduced by Grohe and Schweikardt in [56]. In Section 2.5, we will
see that this fragment, while being relatively expressive, still provides
sufficient locality properties to allow efficient query evaluation on
nowhere dense structures.FOC1

Definition 2.9 (FOC1(P)[σ]). The sets of formulas and counting terms for
FOC1(P)[σ] are built according to the rules (1)–(6) and the following
restricted version of rule (7).

(7)1 If P ∈ P, m = ar(P) and t1, . . . , tm are counting terms with∣∣⋃m
i=1 free(ti)

∣∣ ⩽ 1, then P(t1, . . . , tm) is a formula.

By FOCN(P), we denote the union of all FOCN(P)[σ] for arbitrary
relational signatures σ. This applies analogously to FO, FOC(P), and
FOC1(P).

Example 2.10. Let σ = {E} and P = {P=} as in Example 2.6. In the sen-
tence ψ = ∀x∀yP=

(
#(z).E(x, z), #(z).E(y, z)

)
, expressing that a graph

is regular, we have free
(
P=

(
#(z).E(x, z), #(z).E(y, z)

))
= {x,y}. Hence,

ψ is not contained in FOC1(P). For every fixed k ∈ N, however,
we can express that a graph is k-regular via the FOC1(P)-sentence
ψk = ∀xP=

(
#(y).E(x,y),k

)
.

2.4 locality of first-order logic

Local formulas
In this section, we study Gaifman’s Locality Theorem and its im-
plications on the locality of formulas from first-order logic. First, we
introduce the notion of local formulas. Intuitively, the evaluation of
a local formula only depends on the neighbourhood around the free
variables up to a certain radius. The following definitions are based
on [49]. Let σ be a relational signature and let r ∈N. An FOCN(P)[σ]-
formula φ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local (around x̄)
if for every σ-structure A and every tuple v̄ = (v1, . . . , vk) ∈

(
U(A)

)k,
we have A |= φ[v̄] ⇐⇒ NA

r (v̄) |= φ[v̄]. A formula is local if it is r-local
for some r ∈N.Distance formulas

Let distσ⩽r(x,y) be an FO[σ]-formula such that for every σ-structure
A and all v,w ∈ U(A), we have A |= distσ⩽r[v,w] if and only if

2.4 locality of first-order logic 15

distA(v,w) ⩽ r. Such a formula can be constructed recursively with
quantifier rank at most ⌈log r⌉. To improve readability, we write
distσ(x,y)⩽ r instead of distσ⩽r(x,y), and distσ(x,y)>r instead of
¬distσ⩽r(x,y). We omit the superscript σ when it is clear from the
context. For a tuple x̄ = (x1, . . . , xk) of variables, dist(x̄;y)>r is a
shorthand for

∧k
i=1 dist(xi,y)>r, and dist(x̄;y)⩽ r is a shorthand for∨k

i=1 dist(xi,y)⩽ r. For a tuple ȳ = (y1, . . . ,yℓ), we use dist(x̄; ȳ)>r
as a shorthand for

∧ℓ
j=1 dist(x̄;yj)>r, and dist(x̄; ȳ)⩽ r as a short-

hand for
∨ℓ
j=1 dist(x̄;yj)⩽ r. Basic local sentence

For r ∈N, a basic local sentence (of radius r) in FO[σ] is a sentence of
the form

∃x1 . . . ∃xk
(∧
1⩽i<j⩽k

dist(xi, xj)>2r ∧

k∧
i=1

φ(xi)
)
,

where k ∈N⩾1, x1, . . . , xk are k pairwise distinct variables, and φ(x)
is an r-local FO[σ]-formula. Gaifman normal

form
Definition 2.11 (Gaifman normal form). An FO[σ]-formula is in Gaif-
man normal form if it is a Boolean combination of basic local sentences
and local formulas. The locality radius of a formula φ in Gaifman
normal form is the least r such that all basic local sentences in φ have
radius at most r and every local formula in φ is r ′-local for some
r ′ ⩽ r.

Theorem 2.12 (Gaifman’s Locality Theorem [41]). Every FO[σ]-formula
is equivalent to a formula in Gaifman normal form. Furthermore, there is an
algorithm that computes a formula in Gaifman normal form that is equivalent
to a given FO[σ]-formula.

From the proof of Gaifman’s Locality Theorem (cf. [41] and [49,
Sect. 4.1]), it follows that, for a given formula with quantifier rank q,
the locality radius of the equivalent formula in Gaifman normal form
can be chosen to be at most r(q) ∈ 2O(q), independent of the signature
σ and the number of free variables of the given formula. Local types

Let A be a σ-structure and let v̄ ∈
(
U(A)

)k for some k ∈ N⩾1. For
q, r ∈N, the local (q, r)-type of v̄ in A is the set ltpA

q,r(v̄) := tpNA
r (v̄)

q (v̄).
The following result is a consequence of Gaifman’s Locality Theorem.

Fact 2.13. For all q ∈ N, there is an r := r(q) ∈ 2O(q) such that for all
k ∈ N⩾1, all signatures σ, all σ-structures A, and all v̄, v̄ ′ ∈

(
U(A)

)k, if
ltpA
q,r(v̄) = ltpA

q,r(v̄
′), then tpA

q(v̄) = tpA
q(v̄

′).

By combining Fact 2.8 and Fact 2.13, we obtain the following corol-
lary.

Corollary 2.14. Let φ(x1, . . . , xk) be an FO[σ,q]-formula, and let r := r(q)
be chosen according to Fact 2.13. Then, for every σ-structure A, there is a set
Φ of k-variable q-types such that for all v̄ ∈

(
U(A)

)k,

A |= φ[v̄] ⇐⇒ ltpA
q,r(v̄) ∈ Φ.

16 preliminaries

One of the main ingredients in the proof of Gaifman’s Locality
Theorem in [49] is the following “Feferman-Vaught style” composition
lemma.

Lemma 2.15 (Composition Lemma [49]). Let A,B be σ-structures, k ∈
N, ℓ,m ∈N⩾1, ū ∈

(
U(A)

)k, v̄ ∈
(
U(A)

)ℓ, and w̄ ∈
(
U(B)

)m such that
ū = (u1, . . . ,uk) and U(A) ∩U(B) = {u1, . . . ,uk}. Then, for all q ∈ N,
tpA∪B
q (ūv̄w̄) is uniquely determined by tpA

q(ūv̄) and tpB
q (ūw̄).

Furthermore, there is an algorithm that computes tpA∪B
q (ūv̄w̄) from

tpA
q(ūv̄) and tpB

q (ūw̄).

For this thesis, we need the following local variant of the lemma
that is a stronger version of a result given in [55].

Lemma 2.16 (Local Composition Lemma). Let A be a σ-structure, let
k,q ∈N, ℓ,m ∈N⩾1, r = r(q) according to Fact 2.13, and ū ∈

(
U(A)

)k,
v̄ ∈

(
U(A)

)ℓ, and w̄ ∈
(
U(A)

)m such that dist(v̄, w̄) > 2r + 1. Then,
ltpA
q,r(ūv̄w̄) is uniquely determined by ltpA

q,r(ūv̄) and ltpA
q,r(ūw̄).

Furthermore, there is an algorithm that computes ltpA
q,r(ūv̄w̄) from the

local types ltpA
q,r(ūv̄) and ltpA

q,r(ūw̄).

Proof. We prove the result by induction on k ∈N. For k = 0, i. e. for ū
being the empty tuple, the result follows directly from Lemma 2.15,
since ltpA

q,r(v̄w̄) = tpNA
r (v̄w̄)

q (v̄w̄) and NA
r (v̄w̄) = NA

r (v̄)⊎NA
r (w̄).

Now let k > 0, ū = (u1, . . . ,uk), and let φ(x̄, ȳ, z̄) be a formula of
quantifier rank at most q with x̄ = (x1, . . . , xk), |ȳ| = ℓ, and |z̄| = m. We
define a new structure A ′ over an extended signature σ ′ by deleting
the element uk from A and adding, for every relation symbol R in σ
of arity p ⩾ 2, new relation symbols R1, . . . ,Rp of arity p− 1 with

Ri(A
′) =

{
(a1, . . . ,ai−1,ai+1, . . . ,ap)

∣∣
(a1, . . . ,ai−1,uk,ai+1, . . . ,ap) ∈ R(A)

}
.

Let ū ′ := (u1, . . . ,uk−1) and x̄ ′ := (x1, . . . , xk−1). Using the new re-
lation symbols, we can transform the formula φ(x̄, ȳ, z̄) into a new
FO[σ ′,q]-formula φ ′(x̄ ′, ȳ, z̄) such that φ ∈ ltpA

q,r(ūv̄w̄) if and only

if φ ′ ∈ ltpA ′

q,r(ū
′v̄w̄). By the induction hypothesis, the local type

ltpA ′

q,r(ū
′v̄w̄) can be computed from ltpA ′

q,r(ū
′v̄) and ltpA ′

q,r(ū
′w̄), which

can be computed from ltpA
q,r(ūv̄) and ltpA

q,r(ūw̄). Thus, all in all,
ltpA
q,r(ūv̄w̄) can be computed from ltpA

q,r(ūv̄) and ltpA
q,r(ūw̄).

In Chapters 4 and 6, we see analogous local composition results
for FOCN(P) as well as for first-order logic with weight aggregation.
For first-order logic with weight aggregation, in Chapter 5, we also
provide a Gaifman normal form, while the results for FOCN(P) are
based on so-called Hanf locality and Hanf normal forms.

2.5 parameterised complexity 17

2.5 parameterised complexity

In this section, we introduce the central notions and results of paramet-
erised complexity theory that are relevant for this thesis. We follow the
formalism of Flum and Grohe [39]. In case of parameterised function
problems, the definitions are based on the work of Fuhlbrück [40]. Let
Σ be a finite alphabet. A parameterised (decision) problem over Σ is a pair
(L, κ), where L ⊆ Σ∗ and κ : Σ∗ →N is a polynomial-time computable
function, called parameterisation of Σ∗. If the parameterisation κ is clear
from the context, we can omit it. A parameterised function problem over
Σ is a pair (R, κ), where R ⊆ Σ∗ × Γ∗ for a finite alphabet Γ is a set of
input-output pairs and κ is a parameterisation of Σ∗. Fpt algorithm

Let κ be a parameterisation of Σ∗. An algorithm A with input
alphabet Σ is an fpt algorithm with respect to κ if there is a computable
function f : N → N and a polynomial p such that for every x ∈ Σ∗,
the running time of A on input x is at most f

(
κ(x)

)
· p(|x|). Fixed-parameter

tractable, FPT
Definition 2.17 (Fixed-parameter tractable, FPT). A parameterised
decision problem (L, κ) is fixed-parameter tractable if there is an fpt
algorithm with respect to κ that decides L. The class of all fixed-
parameter tractable decision problems is denoted by FPT. A para-
meterised function problem (R, κ) is fixed-parameter tractable if there
is an fpt algorithm with respect to κ that solves R, that is, for every
input x ∈ Σ∗, if there exists an output y ∈ Σ∗ with (x,y) ∈ R, then the
algorithm outputs one such y.

Let (L, κ) and (L ′, κ ′) be parameterised decision problems over the
alphabets Σ and Σ ′, respectively. An fpt (many-one) reduction from (L, κ) Fpt reduction

to (L ′, κ ′) is a mapping α : Σ∗ → (Σ ′)∗ such that for all x ∈ Σ∗, we have
x ∈ L if and only if α(x) ∈ L ′, α is computable by an fpt algorithm
with respect to κ, and there is a computable function g : N→N such
that κ ′

(
α(x)

)
⩽ g

(
κ(x)

)
for all x ∈ Σ∗. Fpt Turing reduction

An fpt Turing reduction from (L, κ) to (L ′, κ ′) is an algorithm A with
oracle access to L ′ such that A decides L, A is an fpt algorithm with
respect to κ, and there is a computable function g : N→N such that
κ ′
(
α(x ′)

)
⩽ g

(
κ(x)

)
for all oracle queries “x ′ ∈ L ′?” on input x.

Lemma 2.18 ([39]). FPT is closed under both types of fpt reductions, i. e.,
for two parameterised decision problems (L, κ) and (L ′, κ ′), if there is an fpt
(many-one or Turing) reduction from (L, κ) to (L ′, κ ′) and (L ′, κ ′) ∈ FPT,
then (L, κ) ∈ FPT.

For two parameterised function problems (R, κ) and (R ′, κ ′), an fpt
Turing reduction from (R, κ) to (R ′, κ ′) is an algorithm A with oracle
access to R ′ such that A solves R, A is an fpt algorithm with respect to
κ, and there is a computable function g : N→N such that κ ′

(
α(x ′)

)
⩽

g
(
κ(x)

)
for all oracle queries “Return y ′ such that (x ′,y ′) ∈ R ′.” on

input x.

18 preliminaries

2.5.1 Model Checking

Model-checking
problem For a class Φ of formulas and a class C of relational structures, the

parameterised Φ model-checking problem on C, also called p-Φ-Mc(C) or
p-Φ-Mc on C, is defined as follows.

p-Φ-Mc(C)

Input: structure A ∈ C, sentence φ ∈ Φ
Parameter: |φ|

Problem: Decide whether A |= φ holds.

If C is the class of all relational structures or clear from the context,
we can omit it. Let us briefly recapitulate some results on the complex-
ity of the parameterised model-checking problem that are relevant for
this thesis.

Theorem 2.19 ([30]). The parameterised FO model-checking problem (on
the class of all relational structures) is AW[∗]-complete.

Under the standard complexity theoretic assumption FPT ̸= W[1],
this result by Downey, Fellows, and Taylor implies that in general,
first-order model-checking is not fixed-parameter tractable. For more
details on the parameterised complexity classes W[1] and AW[∗], we
refer to [39].

While Theorem 2.19 gives a negative result for the class of all rela-
tional structures, in 2017, Grohe, Kreutzer, and Siebertz [52] were able
to show that the parameterised first-order model-checking problem is
fixed-parameter tractable on nowhere dense classes.

Theorem 2.20 ([52]). For every effectively nowhere dense class C of relational
structures, p-FO-Mc(C) is fixed-parameter tractable.

More precisely, for every effectively nowhere dense class C of relational
structures, there is a computable function f and an algorithm that, given
ε > 0, an FO-sentence φ, and a structure A ∈ C, decides whether A |= φ

holds in time f(|φ| , ε) · |A|1+ε.

For classes of graphs that are closed under taking subgraphs, this
result is optimal. That is, under the assumption FPT ̸= AW[∗], if a
class C that is closed under taking subgraphs is not nowhere dense,
then the parameterised first-order model-checking problem on C is
not fixed-parameter tractable [32, 68].

Moreover, Theorem 2.20 does not generalise to FOC(P). In [56],
Grohe and Schweikardt gave fpt reductions from the first-order model-
checking problem on the class of all graphs to the parameterised
model-checking problem for FOC(P) on simple classes of structures
such as the class of all strings or the class of all trees. In their reduc-
tions, they only require an equality predicate P= ∈ P.

2.5 parameterised complexity 19

Theorem 2.21 ([56]). If C is the class of all strings (over the alphabet
Σ = {a,b, c}) or the class of all trees, then the parameterised FOC({P=})

model-checking problem on C is AW[∗]-complete.

These findings resulted in the definition of the fragment FOC1(P),
which has a fixed-parameter tractable model-checking problem.

Theorem 2.22 ([56]). For every effectively nowhere dense class C of relational
structures, p-FOC1(P)-Mc(C) is fixed-parameter tractable.

More precisely, for every effectively nowhere dense class C of relational
structures, there is a computable function f and an algorithm with a P-oracle
that, given ε > 0, an FOC1(P)-sentence φ, and a structure A ∈ C, decides
whether A |= φ holds in time f(|φ| , ε) · |A|1+ε.

In the proof, Grohe and Schweikardt describe a decomposition of
FOC1(P)-formulas into local FO-formulas and 0-ary relation symbols
over an extended signature. The decomposed formula is then evalu-
ated on an enriched structure that includes the new relation symbols.
We present a similar decomposition for first-order logic with weight
aggregation in Chapter 5.

3
L E A R N I N G F I R S T- O R D E R L O G I C

Here, we introduce the learning framework that we consider in this
thesis. We study Boolean classification problems. The input elements
for the classification task come from a set X, the instance space. A
classifier on X is a function c : X → {0, 1}. Given a training sequence T
of labelled examples (xi, λi) ∈ X× {0, 1}, we want to find a classifier,
called a hypothesis, that explains the labels given in T and that can also
be used to predict the labels of elements from X not given as examples.
Examples (xi, λi) with λi = 1 are called positive examples, while those
with λi = 0 are called negative examples.

In this thesis, we study learning problems in the framework that
was introduced by Grohe and Turán [57] and further studied in [11–
13, 47, 53, 55]. There, the instance space X is a set of tuples from a
(relational) structure, called the background structure, and classifiers
are described using parametric models based on logics. Formally, for
a background structure A and the instance space X =

(
U(A)

)k for
some k ⩾ 1, a hypothesis is defined via a formula φ and a parameter
tuple w̄ ∈

(
U(A)

)ℓ as the mapping hAφ,w̄(x̄) :
(
U(A)

)k → {0, 1} which hAφ,w̄(x̄)

maps a tuple v̄ ∈
(
U(A)

)k to Jφ(v̄, w̄)KA. We write hφ,w̄(x̄) instead of
hAφ,w̄(x̄) when the structure is clear from the context. If the hypothesis
does not use any parameters, we write hAφ(x̄) instead of hAφ,()(x̄). The
parameters can be seen as elements used as constants in the formula.
Listing them explicitly as parameters allows a cleaner analysis of the
computational complexity of the learning problems we introduce later
in this chapter.

Example 3.1. Let G =
(
V(G),E(G)

)
be the structure shown in Fig-

ure 3.1.

(a) Let the instance space X = V(G) be the set of all vertices in G
and let the training sequence T contain the examples (Bob, 1),
(Carol, 1), and (Emma, 0), i. e. Bob and Carol are given as positive
examples and Emma is given as a negative example. A plausible
hypothesis would be h : X→ {0, 1} with h(v) = 1 if and only if v is
a friend of Alice. We can also describe h via the first-order formula
φ(x,y) = E(x,y) and the parameter w = Alice as h = hφ,w. Then,
h(v) = JE(v, Alice)KG for all v ∈ V(G).

(b) We consider the instance space X =
(
V(G)

)2. Let the training se-
quence T contain (Alice, Emma), (Bob, Dan), and (Carol, Emma)
as positive examples, and (Alice, Dan) and (Bob, Emma) as neg-
ative examples. The examples are also depicted in Figure 3.1.
One hypothesis that is consistent with the labelled examples is

21

22 learning first-order logic

Alice

Bob

Carol Dan

Emma

Alice

Bob

Carol Dan

Emma

Figure 3.1: (Left) An excerpt of a social network1. An edge between two users
indicates that they are friends. (Right) The training sequence from
Example 3.1 (b). Positive examples are shown as purple edges
while negative examples are shown in red.

h : X → {0, 1} with h(v1, v2) = 1 if and only if v1 and v2 have a
common friend who is not Carol. This hypothesis can be defined as
h = hφ,w with φ(x1, x2,y) = ∃z

(
E(x1, z)∧E(x2, z)∧¬(z=y)

)
and

w = Carol, so h(v1, v2) = Jφ(v1, v2, Carol)KG for all v1, v2 ∈ V(G).

Regarding the requirements we impose on the hypotheses we are
looking for, we consider the following well-known frameworks from
computational learning theory.Consistent learning

In consistent learning, the examples are assumed to be generated
using an unknown classifier, the target concept, from a known concept
class. The task is to find a hypothesis that is consistent with the training
sequence T , i. e. a function h : X → {0, 1} such that h(xi) = λi for all
(xi, λi) ∈ T . This is what we have done in Example 3.1. In Haussler’sPAC learning

model of agnostic probably approximately correct (PAC) learning [62], a
generalisation of Valiant’s PAC-learning model [89], an (unknown)
probability distribution D on X× {0, 1} is assumed and training ex-
amples are drawn independently from this distribution. The goal is
to find a hypothesis that generalises well, i. e. one is interested in
algorithms that return with high probability a hypothesis with a small
expected error on new instances drawn from the same distribution.
We revisit both frameworks in Sections 3.3 and 3.4.

In the next sections, we discuss the main properties of the learning
problems we consider in this thesis. We do this based on the results that
Grohe and Ritzert obtained in [55] for concepts that can be described
using first-order logic on structures of small degree.

1 Avatars designed by Freepik from Flaticon

3.1 local access and complexity measures 23

3.1 local access and complexity measures

Whenever we analyse learning problems in the context of classical
complexity theory, we usually think of the background structures as
being very large relational databases or huge graphs such as the web
graph.

Hence, in case of relational databases, we would like to learn con-
cepts from examples even if the database is too large to fit into the
main memory. In case of the web graph, ideally our algorithms should
also be able to explore only the regions of the web needed for learning,
without having to rely on a previously gathered snapshot of the whole
web graph saved to a hard disk. Local access

Thus, within the subject of classical complexity theory, the learn-
ing algorithms we consider do not obtain the full representation of a
background structure as input. Instead, we provide algorithms local
access to the background structures, i. e., instead of having random
access, algorithms may only retrieve the neighbours of vertices they
already hold in memory, initially starting with the vertices given in the
training examples. Formally, we give algorithms access to an oracle
answering queries of the form “Is v̄ ∈ R(A)?” and “Return the ith
neighbour of v in A” in constant time. Often, instead of explicitly ask-
ing for neighbours of a vertex one after another, it will be convenient
to use an oracle answering queries of the form “Return a list of all
neighbours of v in A” in time linear in the number of neighbours of
v. Similar access models have also been studied in property testing
for structures of bounded degree [3, 4, 45] and, more broadly, in the
subject of local algorithms [33, 71, 72, 82]. In addition to granting only
local access, we want to learn concepts even without looking at the
entire structure. Hence, we are mainly interested in learning problems
that can be solved in sublinear time.

As our machine model, we use a random-access machine (RAM)
model. Usually, we consider running times under the uniform-cost Uniform-cost

measuremeasure. This allows us to store an element of the background struc-
ture in a single memory cell and access it in a single computation step.
The uniform-cost RAM model is commonly used in the database the-
ory literature as well as in the analysis of algorithmic meta-theorems
[8, 19, 31, 38, 48]. For further details on this model, we refer to [39]. In
case of an analysis towards sublinear running times, we additionally
consider the logarithmic-cost measure, where storing an element of a
structure A requires space O(log |A|), so accessing and storing takes
O(log |A|) many steps. In this thesis, whenever we study the para-
meterised complexity of a problem, an additional log factor would
have no impact on the results. Hence, regarding the parameterised
complexity, we only consider the uniform-cost measure. Data complexity

In contrast to the large background structures, we usually consider
formulas as being human-written and hence, rather short. This justifies

24 learning first-order logic

that in our complexity analyses within classical complexity theory,
we focus on the data complexity of a problem, that is, we consider
formulas as fixed and measure running times in terms of the size
of the background structure, i. e. the number of its elements. This
approach is also common in database theory when analysing the
complexity of the query-evaluation problem [92]. When analysing
the parameterised complexity of a problem, we use the length of the
formula as a parameter.

3.2 consistent parameter learning

Before we introduce the model-learning problems that we study in the
rest of this thesis, we start with the conceptually simpler parameter-
learning problem. This has been introduced in [55]. Recall that a
hypothesis hAφ,w̄ is defined via a formula φ and a parameter tuple

w̄ ∈
(
U(A)

)ℓ. In parameter learning, we assume that the formula is
already given and we only have to find the right parameters. While
this sounds like an easier problem, we will see that having a fixed
formula may force us to do more time-consuming computations than
in cases where we can choose a formula for the hypothesis. In some
cases, it even makes it impossible to solve the problem. The problem
is formally defined as follows.

FO-Learn-Parameter

Input: structure A, FO-formula φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ,

training sequence T ∈
((
U(A)

)k × {0, 1}
)m

Problem: Return a tuple w̄ ∈
(
U(A)

)ℓ such that the hypothesis
hAφ,w̄ is consistent with T , or reject the input if there is
no such tuple.

To better understand the complexity of this problem, we use (a
variation of) the example that Grohe and Ritzert gave in [55].

Example 3.2. Let P be a colour (i. e. a unary relation symbol) and
let G =

(
V(G),E(G),P(G)

)
be a coloured graph. Let P(G) := {w∗}

for some w∗ ∈ V(G). We consider the formula φ(x,y) = P(y). Then,
hGφ,w is constant 1 if w = w∗, and constant 0 else. Suppose that
the target concept is hGφ,w∗ . In this example, an algorithm solving
FO-Learn-Parameter would only receive positive training examples
and the only way to solve the problem would be to find the parameter
w∗. If the background structure is disconnected and there is no training
example in the connected component ofw∗, then the algorithm, having
only local access to the background structure, is actually unable to
find the correct parameter. Hence, the problem is not solvable with
only local access.

3.2 consistent parameter learning 25

Even if we require the background structure to be connected, al-
gorithms are still unable to solve this problem in sublinear time. For
instance, consider a coloured path with the training examples being
at one end and the correct parameter being at the other end of the
path. With only local access, an algorithm needs linear time to find
the parameter.

Without the requirement to use φ as the formula in our hypothesis,
we could have just used φ ′(x,y) = True together with an arbitrary
parameter.

This example shows that even on very simple structures, we are
unable to solve the problem in sublinear time. Next, we analyse para-
meter learning in terms of its parameterised complexity. The following
is a parameterised version of the problem.

p-FO-Learn-Parameter

Input: structure A, FO-formula φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ,

training sequence T ∈
((
U(A)

)k × {0, 1}
)m

Parameter: |φ|

Problem: Return a tuple w̄ ∈
(
U(A)

)ℓ such that the hypothesis
hAφ,w̄ is consistent with T , or reject the input if there is
no such tuple.

In [11], we gave a reduction from the parameterised clique prob-
lem to p-FO-Learn-Parameter. Due to Downey and Fellows [29],
the parameterised clique problem is known to be complete for the
parameterised complexity class W[1]. Although we did not explicitly
state the reduction in [11] as an fpt reduction, one can easily see that
the reduction implies that p-FO-Learn-Parameter is W[1]-hard.

Here, we present a stronger and yet much simpler result. Formally,
in the complexity analysis of this problem, we consider its decision
variant where the problem is to decide whether there is a tuple w̄ that
yields a consistent hypothesis. The following is an easy consequence of
the AW[∗] hardness of the parameterised FO model-checking problem
(Theorem 2.19).

Corollary 3.3. p-FO-Learn-Parameter is hard for the parameterised
complexity class AW[∗] under fpt reductions.

Proof. We give an fpt many-one reduction from the parameterised
FO model-checking problem to p-FO-Learn-Parameter. Then, the
statement follows from Theorem 2.19.

Let A be the structure and φ ∈ FO be the formula given as input in
the model-checking problem. Let φ ′(x,y) = φ for two variables x,y
that do not occur in φ. Moreover, let T =

(
(v, 1)

)
for some v ∈ U(A).

Note that, since the evaluation of φ ′ is independent of the assignment

26 learning first-order logic

to x and y, for every w ∈ U(A), the hypothesis hAφ,w is consistent with
T if and only if A |= φ holds. Hence, (A,φ) ∈ p-FO-Mc if and only if
(A,φ ′, T) ∈ p-FO-Learn-Parameter.

Under common assumptions (cf. Section 2.5), this corollary implies
that p-FO-Learn-Parameter is not fixed-parameter tractable.

Remark 3.4. Corollary 3.3 can even be extended to a weaker (promise)
version of p-FO-Learn-Parameter, where we view the problem as
a function problem and assert the existence of a tuple that yields
a consistent hypothesis. The result can be shown via an fpt Turing
reduction.

For that, let (A,φ) be the input of the model-checking problem.
We assume without loss of generality that A has at least two distinct
vertices. Now, let A ′ be the expansion of A with a fresh colour P,
where we set P(A ′) = {w∗} for some vertex w∗ ∈ U(A ′). As the input
formula for the learning problem, we use

φ ′(x,y) =
(
P(y)∧φ

)
∨
(
¬P(y)∧¬φ

)
.

Let T =
(
(v, 1)

)
for some v ∈ U(A ′). Then, for every vertex w ∈ U(A),

the hypothesis hA
′

φ ′,w is consistent with T if and only if w = w∗ and
A |= φ, or w ̸= w∗ and A ̸|= φ.

All in all, we can decide whether A |= φ holds by computing A ′, φ ′,
and T , using an p-FO-Learn-Parameter oracle on input (A ′,φ ′, T),
and returning “yes” if and only if the returned parameter is w∗. The
inputs A ′, φ ′, and T can be computed in time linear in the size of A
and φ. Furthermore, |φ ′| ⩽ 2 · |φ|+ c for some constant c. Hence, the
described reduction is an fpt Turing reduction.

3.3 consistent model learning

In the following, we introduce the model-learning problems that we
will consider for the rest of this thesis. We start within the framework
of consistent learning. That is, as described in the beginning of this
chapter, we are given a sequence of training examples and we assume
that the examples have been generated using an unknown target
concept from a known concept class. Our task is to find a hypothesis
that is consistent with the training sequence. In contrast to parameter
learning, we have to find both the formula and the parameters of the
hypothesis.

To make this problem feasible at all, we only consider concept
classes of limited complexity. Concepts should be definable, like the
hypotheses that we learn, via formulas and tuples of parameters. We
limit the complexity of the formulas, and we also bound the numbers
of parameters. Formally, for the learning problem on a background

3.3 consistent model learning 27

structure A with k-tuples of elements given as examples, we require
that the concept class can be defined as

HΦ∗,k,ℓ(A) :=
{
hAφ,w̄

∣∣ φ ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ}
for a set Φ∗ of formulas φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ. To limit the
complexity of the formulas in Φ∗, in case of first-order logic, the set
will only contain formulas up a certain quantifier rank.

Since we would like to use the learned hypothesis to predict the
label of tuples we have not seen yet, we also limit our choice of
hypotheses and require that the hypothesis comes from a hypothesis
class of limited complexity. We do this mainly for two reasons. First,
we want to make sure that we are able to evaluate the hypothesis on
new tuples efficiently. Second, we want to avoid overfitting, where the
hypothesis perfectly fits the training examples, but it does so by simply
memorising the examples instead of learning an underlying rule. As
we will see in Section 3.4, limiting the complexity of a hypothesis
class is a key ingredient to finding hypotheses that generalise well.
In the results of this thesis, we usually allow algorithms to return
hypotheses that are more complex than the concepts contained in the
concept class. Hence, we use a hypothesis class HΦ,k,ℓ(A) with a set
Φ of formulas that can be more complex than Φ∗.

To formally introduce the learning problem, let Φ∗ and Φ be sets
of formulas with k+ ℓ free variables. The consistent model-learning
problem for target concepts on k-tuples using only formulas from Φ∗

and learned hypotheses using only formulas from Φ is defined as
follows.

Learn-Consistent(k,Φ∗,Φ)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1}
)m

Problem: Return a formula φ ∈ Φ and a tuple w̄ ∈
(
U(A)

)ℓ such
that the hypothesis hAφ,w̄ is consistent with T . The al-
gorithm may reject if there is no formula φ∗ ∈ Φ∗ and
tuple w̄∗ ∈

(
U(A)

)ℓ such that the hypothesis hAφ∗,w̄∗ is
consistent with T .

Now, we consider the model-learning problem for first-order logic
that Grohe and Ritzert introduced in [55]. There, for fixed k, ℓ,q∗ ∈N

and a fixed signature σ, they considered concept classes based on first-
order formulas of quantifier rank at most q∗ with k+ ℓ free variables,
so

Φ∗ =
{
φ(x̄, ȳ) ∈ FO[σ,q∗]

∣∣ |x̄| = k, |ȳ| = ℓ
}

.

FO-Learn-ConsistentBy Fact 2.7, up to equivalence, there are only finitely many formulas
in Φ∗. By Gaifman’s Locality Theorem (Theorem 2.12), every single

28 learning first-order logic

of those formulas is equivalent to a formula in Gaifman normal form.
This shows that there is some q ∈N such that every formula in Φ∗ is
equivalent to a formula in Gaifman normal form of quantifier rank at
most q. Grohe and Ritzert use this q as the bound on the quantifier
rank forΦ, i. e. they useΦ =

{
φ(x̄, ȳ) ∈ FO[σ,q]

∣∣ |x̄| = k, |ȳ| = ℓ
}

. This
allows them in their algorithms to only look for formulas in Gaifman
normal form. In the following, we will denote the resulting problem
Learn-Consistent(k,Φ∗,Φ) by FO-Learn-Consistent(σ,k, ℓ,q∗).

In general, this problem cannot be solved in sublinear time with
only local access to the background structure.

Theorem 3.5. Let σ be a signature that contains at least one relation sym-
bol of arity at least 2. Then, for all k, ℓ ∈ N⩾1 and q∗ ⩾ 2, there is no
algorithm with only local access to the background structure that solves
FO-Learn-Consistent(σ,k, ℓ,q∗) in time sublinear in the size of the back-
ground structure.

Proof. First, we prove the statement for k = ℓ = 1, q∗ = 2, and σ = {E}

for a binary relation symbol E. This is based on a proof we presented
in [11]. Afterwards, we generalise this result.

We prove the statement by contradiction. Assume that there is an
algorithm solving FO-Learn-Consistent(σ,k, ℓ,q∗) in sublinear time.
Choose n ∈N such that for all n ′ ⩾ n, the algorithm uses at most n

′

16

many steps on background structures of size n ′.
Now, we construct two background structures A1 and A2 and cor-

responding training sequences T1 and T2 such that the algorithm is
unable to distinguish the two inputs in sublinear time. Hence, the
algorithm has to return the same formula and the same parameter
on both inputs. As we will see, the resulting hypothesis has to be
inconsistent with at least one of the two inputs, which then contradicts
our assumption that the algorithm solves the problem.

The background structure A1 is depicted in Figure 3.2. It is formally
defined as the {E}-structure with

Ui,j = {zi,j,p | p ∈ [n]} for i ∈ [2] and j ∈ [4],

U(A1) = {x1, x2, x3, x4,y1,y2} ∪
⋃

i∈[2], j∈[4]

Ui,j,

R =
{
{yi, zi,j,p}

∣∣ i ∈ [2], j ∈ [4],p ∈ [n]
}

, (rows)

C =
{
{xj, zi,j,p}

∣∣ i ∈ [2], j ∈ [4],p ∈ [n]
}

, (columns)

E1 =
{
{z1,1,n−1, z1,1,n}, {z1,3,n−1, z1,3,n},

{z2,1,n−1, z2,1,n}, {z2,4,n−1, z2,4,n}
}

, and

E(A1) = R∪C∪ E1,

where {u, v} ∈ E(A1) means that both (u, v) and (v,u) are contained in
E(A1). Intuitively, we can view the structure as eight sets of vertices
Ui,j being arranged in a table with two rows and four columns, and six
additional vertices. The vertices y1 and y2 are used to indicate the first

3.3 consistent model learning 29

y1

x1 x2 x3 x4

y2

Figure 3.2: Background structure A1 from the proof of Theorem 3.5. Eight
sets of vertices are placed in a table with two rows and four
columns. The yi vertices are connected to all vertices in the sets
in the ith row and the xj vertices are connected to all vertices in
the sets in the jth column. The vertices on the grey background
are those parts of the background structure that the algorithm is
unable to explore in sublinear time.

30 learning first-order logic

and second row. All vertices in a set in the ith row are connected to yi
via an edge. The vertices x1 to x4 are used to indicate the columns and
the vertices in the jth column are connected to xj via an edge. Finally,
there are four additional edges within the table. In the first row, there
is one edge connecting two vertices in the first column and one edge
connecting two vertices in the third column. In the second row, there
is an edge in the first and fourth column.

The structure A2 is almost identical to A1; only the additional edges
differ. There, we have

E2 =
{
{z1,1,n−1, z1,1,n}, {z1,4,n−1, z1,4,n},

{z2,1,n−1, z2,1,n}, {z2,3,n−1, z2,3,n}
}

and

E(A2) = R∪C∪ E2,

i. e., the second edge in the first row is now in the fourth instead of the
third column and in the second row the edge is in the third instead of
the fourth column.

For the target concept in both background structures, we use

φ∗(x,y) = ∃z1∃z2
(
E(x, z1)∧E(x, z2)∧E(y, z1)∧E(y, z2)∧E(z1, z2)

)
.

For both training sequences, we use the labelled vertices x1 to x4 and
we use y1 or y2 as a parameter. Hence, for the examples, the formula
is satisfied if and only if there is an edge in the column indicated by
x and the row indicated by y. For the first structure, we use y1 as a
parameter, so we select the first row. There, the first and third column
contain an edge, so the resulting training sequence is

T1 =
(
(x1, 1), (x2, 0), (x3, 1), (x4, 0)

)
.

For the second structure, we select y2 as a parameter and hence the
second row of A2. There, again the first and third column contain an
edge, so T2 = T1.

Because of our choice of n, we can make sure that, for a suitable
ordering of the vertices in the background structures, the algorithm is
unable to find any additional edge from E1 or E2. Hence, the algorithm
is unable to distinguish the two inputs and will thus return the same
formula φ and the same parameter w. Because the first and third
column as well as the second and fourth column are indistinguishable
for the algorithm, again, by choosing a suitable order on the vertices of
the background structures, we can assume that the algorithm returns
x1, x2, y1, y2, or some vertex from the first or second column as the
parameter w.

We consider the isomorphism between A1 and A2 that keeps y1, y2
as well as the first and second column identical but swaps the third and
fourth column (including x3 and x4). Note that the isomorphism also
maps the parameter w to itself. The existence of such an isomorphism
implies that the returned formula φ behaves in A1 on x3 like it does

3.3 consistent model learning 31

in A2 on x4, so Jφ(x3,w)KA1 = Jφ(x4,w)KA2 . However, in the training
sequence T1 = T2, the vertices x3 and x4 have different labels. Hence,
the algorithm cannot return on both A1 and A2 a consistent hypothesis,
so it has to fail on at least one of them. This contradicts our assumption,
so there is no algorithm solving FO-Learn-Consistent(σ,k, ℓ,q∗) in
sublinear time for σ = {E}, k = ℓ = 1 and q∗ = 2.

Now, we generalise this result. Note that we did not use any bounds
on the quantifier rank for the returned formula φ. Hence, our proof
also works for larger values of q∗. If E is a relation symbol of higher
arity, we can set the first two entries of the tuples like described
above and then repeat the second entry to fill the rest of the tuple.
Additional relation symbols have no influence on the argumentation
presented above. Similarly, for k > 1, we can provide the same vertices
as examples, but instead of using single vertices, we use tuples filled
with the same vertex.

For ℓ > 1, we use the disjoint union of ℓ copies of A1 as the first back-
ground structure and proceed analogously for the second background
structure. The training sequence consists of the vertices x1 to x4 with
their corresponding labels from every single of those ℓ copies. Then,
the algorithm either puts exactly one parameter in each of the copies,
or there is at least one copy without any parameters. Thus, in both
cases, there is at least one copy with at most one parameter. Hence,
the argumentation from above still applies for this copy, showing that
the algorithm is unable to provide a consistent hypothesis for at least
one of the inputs.

Grohe, Löding, and Ritzert [53] proved a similar result for learning
on strings, although with a more restrictive local-access model.

To be able to learn first-order definable concepts in sublinear time,
we need to restrict the class of background structures that we allow
as input to our learning problem. Grohe and Ritzert [55] showed
that the problem is solvable in time polynomial in the degree of the
background structure and the number of examples in the training
sequence.

Theorem 3.6 ([55]). Let σ be a relational signature and let k, ℓ,q∗ ∈ N.
There is an algorithm that solves FO-Learn-Consistent(σ,k, ℓ,q∗) in
time (logn+ d+m)O(1) under the logarithmic-cost measure and in time
(d+m)O(1) under the uniform-cost measure, where n is the size and d is
the degree of the background structure, and m is the length of the training
sequence.

On classes of structures of polylogarithmic degree, that is, classes C

for which there is some c ∈N such that deg(A) ∈ O
(
(log |A|)c

)
for all

structures A in C, Theorem 3.6 implies that consistent model-learning
is possible in sublinear time.

Corollary 3.7. Let σ be a relational signature, let k, ℓ,q∗ ∈ N, and let C
be a class of structures of polylogarithmic degree. There is an algorithm that

32 learning first-order logic

solves FO-Learn-Consistent(σ,k, ℓ,q∗) on C in time sublinear in the
size of the background structure and polynomial in the length of the training
sequence, under the logarithmic-cost as well as the uniform-cost measure.

In the proof of Theorem 3.6, Grohe and Ritzert [55] provide a brute-
force algorithm that tests all combinations of certain formulas and
parameters. Since the assumed target concept uses a formula of quan-
tifier rank at most q∗, by Gaifman’s Locality Theorem (Theorem 2.12),
there is an r∗ = r(q∗) ∈ N such that the used formula is r∗-local.
Furthermore, there is an equivalent formula in Gaifman normal form
of quantifier rank at most q. Hence, Grohe and Ritzert test all formulas
from the (up to equivalence) finite set of r∗-local formulas in Gaifman
normal form of quantifier rank at most q. Using the locality of the
considered formulas, they show that it suffices to limit the search for
suitable parameters to a neighbourhood of a certain radius around
the examples given in the training sequence. The size of the neigh-
bourhood, and thus also the number of parameter tuples to test, is
polynomial in the degree of the structure and the number of training
examples. Finally, again due to the locality of the considered formulas,
a single test of a hypothesis can be performed in time polynomial in
the degree of the structure. All in all, this yields an algorithm with the
desired running time bounds. For the detailed proof, we refer to [55].

In this thesis, we prove a similar result for the extension FOCN
of first-order logic with counting quantifiers in Chapter 4. There,
instead of using Gaifman locality and Gaifman normal forms, we
use so-called Hanf locality and Hanf normal forms. In Chapter 6,
we generalise Theorem 3.6 by describing properties of the sets Φ∗

and Φ that guarantee that we can solve Learn-Consistent(k,Φ∗,Φ)

via Gaifman locality and Gaifman normal forms in sublinear time,
possibly with a precomputation step to build an index structure.
Then, as an application of this general result, we show that concepts
definable in first-order logic with weight aggregation can be learned
in sublinear time.

3.4 pac learning

In this section, we introduce Haussler’s model of agnostic probably
approximately correct (PAC) learning [62], a generalisation of Valiant’s
PAC-learning model [89]. Moreover, to get familiar with this model
within our logic learning framework, we discuss the agnostic PAC-
learning results from [55] and study techniques to prove these results
based on the consistent-learning results from the last section.

Intuitively, in (agnostic) PAC learning, we are interested in hypo-
theses that generalise well, i. e. hypotheses that not only work well on
the examples from the training sequence but also on tuples not given
as examples.

3.4 pac learning 33

In PAC learning, we assume an (unknown) probability distribution
D on the instance space X and, as in consistent learning, a consistent
target concept c : X→ {0, 1}. The learner’s goal is to find a hypothesis
h : X → {0, 1}, based on a sequence of training examples randomly
drawn from D, such that h minimises the generalisation error

errD,c(h) := Pr
x∼D

(
h(x) ̸= c(x)

)
,

i. e. the probability of being wrong on a random instance. In practice,
we want to find a hypothesis with a generalisation error below a
certain threshold ε.

In agnostic PAC learning, we drop the assumption of having a con-
sistent target concept. Instead, we assume an (unknown) probability
distribution D on X× {0, 1}. Again, a learning algorithm should find
a hypothesis h that minimises the generalisation error, which is now
defined as

errD(h) := Pr
(x,λ)∼D

(
h(x) ̸= λ

)
.

Here, since a generalisation error of 0 might not be possible, we
want to find a hypothesis with a generalisation error close to the best
possible one.

Definition 3.8 (Agnostically PAC-learnable [85]). A hypothesis class
H of hypotheses h : X → {0, 1} is agnostically PAC-learnable if there is
a function mH : (0, 1)2 → N and a learning algorithm L with the
following property: For all ε, δ ∈ (0, 1) and for every distribution
D over X× {0, 1}, when running L on a sequence T of m examples
drawn i.i.d. from D with m ⩾ mH(ε, δ), it outputs a hypothesis h ∈ H

such that, with probability of at least 1− δ over the choice of training
examples, it holds that

errD(h) ⩽ inf
h ′∈H

errD(h ′) + ε.

We call such an algorithm L an (agnostic) PAC-learning algorithm.

In this definition, we find two parameters, ε and δ. The first para-
meter ε, also called the accuracy parameter (“approximately correct”),
describes how far the hypothesis returned by the algorithm is allowed
to be from an optimal hypothesis. This allows the returned hypothesis
to make a few mistakes, e. g. in case of outliers that are manually
handled by an optimal solution but that we do not see in the limited
number of training examples. The second parameter δ, also called
the confidence parameter (“probably”), describes how confident we
are to return a good hypothesis on a randomly chosen sequence of
training examples. This refers to cases where the randomly chosen
training sequence is not representative for D, e. g. it consists only
of positive examples or the same example is repeated over and over

34 learning first-order logic

again. The function mH determines, given the parameters ε and δ,
the sample complexity of the problem, i. e. the number of examples
needed to probably find an approximately correct hypothesis. For a
more detailed discussion of (agnostic) PAC learning, we refer to [85].

Analogously to the results in the consistent-learning case, in [55],
Grohe and Ritzert analysed a relaxed version of agnostic PAC learning.
There, we want to approximately learn concepts from a concept class,
but we allow the algorithms to return hypotheses from a slightly
more complex hypothesis class. To define the agnostic PAC-learning
problem within our logic learning framework, let Φ∗ and Φ be sets of
formulas with k+ ℓ free variables. In addition to the previously defined
membership and neighbourhood oracles for the background structure
A, we allow algorithms to query the size |A| of the structure. This
information is needed to compute the sufficient length mH(ε, δ) of the
training sequence. Furthermore, we give algorithms oracle access to
the probability distribution D on

(
U(A)

)k × {0, 1}. That is, whenever
an algorithm queries the oracle, it receives a labelled example from(
U(A)

)k × {0, 1} drawn from D. The labelled examples are drawn
independently of each other.

The agnostic PAC k-ary model-learning problem for Φ∗, with re-
turned hypotheses using only formulas from Φ, is defined as follows.

Learn-PAC(k,Φ∗,Φ)

Input: structure A, rational numbers ε, δ > 0, probability distri-
bution D on

(
U(A)

)k × {0, 1}

Problem: Return a formula φ ∈ Φ and a tuple w̄ ∈
(
U(A)

)ℓ such
that, with probability of at least 1− δ over the choice of
examples drawn i.i.d. from D, it holds that

errD
(
hAφ,w̄

)
⩽ ε∗ + ε,

where

ε∗ := min
φ∗∈Φ∗,

w̄∗∈(U(A))ℓ

errD
(
hAφ∗,w̄∗

)
.

There is a strong connection between agnostic PAC learnability
and the so-called VC dimension of a hypothesis class. It is known
that, information theoretically, a hypothesis class is agnostically PAC-
learnable if and only if it has finite VC dimension [14, 85, 91]. In
particular, every finite hypothesis class is agnostically PAC-learnable.
We briefly discuss this result in Section 7.3.

To solve the problem algorithmically, we can follow the Empirical
Risk Minimisation (ERM) rule [85, 90], that is, our algorithm should

3.4 pac learning 35

return a hypothesis h that minimises the training error (or empirical
risk)

errT (h) :=
1

|T |
·
∣∣{(v̄, λ) ∈ T ∣∣ h(v̄) ̸= λ}∣∣

on the training sequence T of queried examples. Thus, in order to
solve Learn-PAC(k,Φ∗,Φ), we first consider the following problem.

Learn-ERM(k,Φ∗,Φ)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1}
)m

Problem: Return a formula φ ∈ Φ and a tuple w̄ ∈
(
U(A)

)ℓ such
that

errT
(
hAφ,w̄

)
⩽ min

φ∗∈Φ∗,
w̄∗∈(U(A))ℓ

errT (hAφ∗,w̄∗).

This problem is very similar to the consistent model-learning prob-
lem. The only difference is that, instead of asking for a consistent
hypothesis, we want to find a hypothesis that is at least as consistent
as the best one from the concept class.

Now, we revisit the sets of first-order formulas Φ∗ and Φ from
the definition of FO-Learn-Consistent(k,Φ∗,Φ). Recall that Φ∗ con-
tains formulas of quantifier rank at most q∗ and Φ contains formulas
of quantifier rank at most q. The problems that Grohe and Ritzert
studied are FO-Learn-ERM(σ,k, ℓ,q∗) := Learn-ERM(k,Φ∗,Φ) and FO-Learn-ERM,

FO-Learn-PACFO-Learn-PAC(σ,k, ℓ,q∗) := Learn-PAC(k,Φ∗,Φ).
To solve FO-Learn-ERM, they use a brute-force algorithm similar to

the one they present for the problem FO-Learn-Consistent. However,
instead of checking whether a hypothesis is consistent, they count the
number of errors the hypotheses make on the training sequence and
return the hypothesis that minimises this number.

To solve FO-Learn-PAC, the remaining missing ingredient is the
following result that gives us a bound on the needed queried examples
as well as a bound on the difference between the training and the
generalisation error.

Lemma 3.9 (Uniform Convergence [85]). Let H be a finite hypothesis
class over the instance space X and let

mUCH (ε, δ) :=
⌈

log(2 |H| /δ)

2ε2

⌉
.

Then, for all ε, δ > 0 and for every distribution D over X× {0, 1}, if a training
sequence T of length at least mUCH (ε, δ) is drawn i.i.d. from D, then, with
probability at least 1− δ, the training sequence is ε-representative, that is,
for all h ∈ H,∣∣ errT (h) − errD(h)

∣∣ ⩽ ε.

36 learning first-order logic

Finally, we explain how Grohe and Ritzert combine the algorithm
for FO-Learn-ERM with the Uniform Convergence Lemma to solve
FO-Learn-PAC. Let A be a background structure. We consider the
concept class C = HΦ∗,k,ℓ(A) and the hypothesis class H = HΦ,k,ℓ(A).
Since, up to equivalence, both Φ and Φ∗ only contain finitely many
formulas, the number of hypotheses in C and H is bounded by s · |A|ℓ

for some constant s. We choose the number m of queried examples as
m(|A| , ε, δ) := mUCH (ε/2, δ). More specifically, we set

m(n, ε, δ) :=
⌈
2 log(2s ·nℓ/δ)

ε2

⌉
.

Now, let D be a distribution over X× {0, 1} and let h∗ ∈ C be a
hypothesis that minimises the generalisation error, that is, errD(h∗) =

minh ′∈C errD(h ′). Let T be a training sequence drawn i.i.d. from D of
length at least m(|A| , ε, δ), and let h ∈ H be the hypothesis returned
by an algorithm solving FO-Learn-ERM(σ,k, ℓ,q∗) on input T .

Recall that for every formula in Φ∗, there is an equivalent formula
in Gaifman normal form in Φ. Thus, for the training error, we have
errT (h) ⩽ errT (h∗), since h∗ ∈ C ⊆ H and the algorithm returns
a hypothesis h that minimises the training error. Moreover, by the
Uniform Convergence Lemma, with probability at least 1− δ, it holds
that

∣∣ errT (h ′) − errD(h ′)
∣∣ ⩽ ε

2 for all h ′ ∈ H. This especially holds for
h as well as for h∗. Hence,

errD(h) ⩽ errT (h) +
ε

2
⩽ errT (h∗) +

ε

2
⩽ errD(h∗) +

ε

2
+
ε

2

with probability at least 1 − δ. Note that this is the requirement
we have in FO-Learn-PAC for the returned hypothesis. Thus, an
algorithm solving the problem FO-Learn-ERM(σ,k, ℓ,q∗) also solves
FO-Learn-PAC(σ,k, ℓ,q∗) when running it on m = m(|A| , ε, δ) quer-
ied examples. This number can be bounded by O

(
log(|A|/δ)

ε2

)
. All in

all, this yields the following result.

Theorem 3.10 ([55]). Let σ be a relational signature and let k, ℓ,q∗ ∈
N. There is an algorithm that solves FO-Learn-PAC(σ,k, ℓ,q∗) in time
(logn+d+ 1/ε+ 1/δ)O(1) under the logarithmic-cost and the uniform-cost
measure, where n is the size and d is the degree of the background structure.

Analogously to the consistent model-learning problem, on classes
of structures of polylogarithmic degree, Theorem 3.10 implies that
probably approximately correct model-learning is possible in sublinear
time.

Corollary 3.11. Let σ be a relational signature, let k, ℓ,q∗ ∈N, and let C
be a class of structures of polylogarithmic degree. There is an algorithm that
solves FO-Learn-PAC(σ,k, ℓ,q∗) on C in time sublinear in the size of the
background structure, under the logarithmic-cost as well as the uniform-cost
measure.

3.4 pac learning 37

In Chapter 4, we prove PAC-learning results for logics with counting.
In Chapter 6, we generalise the results to weighted structures and
logics with weight aggregation.

Theorem 3.10 and Corollary 3.11 show a strong connection between
consistent and PAC model learning. Only slight modifications are
needed to turn the consistent-learning algorithm into an algorithm
performing Empirical Risk Minimisation that can then be used within
a PAC-learning algorithm. To conclude this section, we show that the
strong connection also holds in the other direction. That is, analog-
ously to a proof by Grohe, Löding, and Ritzert in [53], we transform
Theorem 3.5, our negative result for the consistent model-learning
problem, into a negative result for the PAC model-learning problem.

Theorem 3.12. Let σ be a signature that contains at least one relation
symbol of arity at least 2. Then, for all k, ℓ ∈ N⩾1 and q∗ ⩾ 2, there is
no algorithm with only local access to the background structure that solves
FO-Learn-PAC(σ,k, ℓ,q∗) in time sublinear in the size of the background
structure.

Proof. This proof is based on the proof of Theorem 3.5. We only con-
sider the case k = ℓ = 1, q∗ = 2 and σ = {E} for a binary relation
symbol E. The generalisation can be done analogously to the original
proof. Let A1 and A2 be the background structures and T := T1 = T2 be
the training sequences from the proof. Let D be the uniform distribu-
tion over the examples from T , that is, (x1, 1), (x2, 0), (x3, 1), and (x4, 0)
have probability 1

4 ; all other (v, λ) ∈ U(A1)× {0, 1} = U(A2)× {0, 1}
have probability 0. By the choice of D, if a hypothesis misclassifies at
least one of the xi, it has a generalisation error of at least 14 .

Assume that L is an algorithm that solves FO-Learn-PAC(σ,k, ℓ,q∗)
in sublinear time. As we argued in the proof of Theorem 3.5, L is
unable to distinguish A1 and A2 from each other (by choosing a
suitable ordering on the vertices). Furthermore, we argued that such
an algorithm would also be unable to distinguish the first and third
column as well as the second and fourth column of the background
structures. In the proof of Theorem 3.5, we chose an ordering on the
vertices such that the parameter returned by the algorithm is x1, x2, y1,
y2, or some vertex from the first or second column. Here, the vertex
returned by L may depend on the training sequence drawn from D.
However, by choosing a sufficient ordering on the vertices, we can
still make sure that the returned parameter is among the mentioned
ones (i. e. among x1, x2, y1, y2, or some vertex from the first or second
column) with probability at least 12 over the choice of examples drawn
from D.

Now, we only consider those cases where the parameter is among
the mentioned ones. For every fixed choice of examples, analogously
to the proof of the consistent-learning case, the algorithm L has to
return the same hypothesis on both background structures. Thus, the
hypothesis returned by the algorithm has to misclassify at least one

38 learning first-order logic

of the xi on at least one of the two background structures. Hence, on
one of the two background structures, it makes at least one error in at
least half of the cases where the parameter is among the mentioned
ones, so with (conditional) probability at least 12 .

Overall, including the probability that the chosen parameter is
among the mentioned vertices, on at least one of the two background
structures, L has to make at least one error on the xis with probab-
ility at least 12 ·

1
2 = 1

4 . Combined with our observation above, this
means that, on one of two background structures, the algorithm has a
generalisation error of at least 14 with probability at least 14 over the
choice of examples drawn from D. We choose ε = δ = 1

8 . Then L does
not meet the requirements of FO-Learn-PAC, which contradicts our
assumption.

All in all, this shows that there is no algorithm that solves the
problem FO-Learn-PAC(σ,k, ℓ,q∗) in sublinear time.

3.5 related work

As described in the beginning of this chapter, the learning framework
we consider in this thesis has been introduced by Grohe and Turán
in [57]. There, the authors proved information-theoretic learnability res-
ults for concepts that can be described using first-order and monadic
second-order logic on restricted classes of background structures such
as the class of planar graphs and classes of graphs of bounded degree.
Algorithmic aspects of the framework, including the running time of a
learning algorithm, have been first studied by Grohe and Ritzert in [55].
They showed, as we have seen in Sections 3.3 and 3.4, that first-order
definable concepts are both consistent- and PAC-learnable in sublinear
time, measured in the size of the background structure, over structures
of at most polylogarithmic degree. In [53], Grohe, Löding, and Ritzert
examined the learnability of concepts definable in first-order and mon-
adic second-order logic over simple structures of unbounded degree,
namely ordered strings. Even in the unary case, i. e. for X = V(A),
they were able to show that there is no consistent-learning algorithm
for first-order definable concepts running in sublinear time. However,
by introducing a linear-time pre-processing phase to build an index
for the background structure, they were able to show that concepts
definable in monadic second-order logic can be learned in sublinear
learning time. The results have been extended by Grienenberger and
Ritzert [47] from strings to trees.

Closely related to the framework we consider is the framework of
inductive logic programming (ILP) [25, 28, 66, 76, 77]. In both frameworks,
we are in a passive supervised learning setting where the learning
algorithms are given labelled examples. These examples are labelled
according to some target concept and the algorithms should return
a hypothesis that approximately matches this target concept. One of

3.5 related work 39

the main differences between both frameworks is that we encode the
background knowledge in a relational structure, whereas in ILP, it
is represented in a background theory, i. e. a set of formulas. PAC-
learning results for ILP have often been obtained by syntactically
restricting the hypothesis classes (see, e. g., [25, 66]), while we use
restricted classes of background structures such as classes of small
degree or nowhere dense classes.

In the database literature, various approaches to learning queries
from examples have been studied, both in passive (such as ours) and
active learning settings. In passive learning settings, results often focus
on conjunctive queries [9, 10, 61, 63, 67] or consider queries outside
the relational database model [15, 87], while we focus on (extensions
of) full first-order logic. In the active learning setting, as introduced
by Angluin in [7], learning algorithms are allowed to actively query
an oracle. This includes membership queries that allow the learning
algorithm to actively choose examples and obtain their corresponding
labels. Results in this setting [1, 5, 15, 86] again consider different types
of queries including, quite recently, conjunctive queries [20]. Another
related subject in the database literature is the problem of learning
schema mappings from examples [6, 17, 21, 22, 46].

In formal verification, related logical learning frameworks [23, 34,
44, 73, 94] have been studied as well.

4
L E A R N I N G L O G I C S W I T H C O U N T I N G

In this chapter, we generalise the results of Grohe and Ritzert for
first-order logic to the extension FOCN(P) of first-order logic with
counting quantifiers. Since there is no analogue of Gaifman’s Theorem
for FOCN(P), the proofs in this chapter are based on Hanf’s Theorem,
which we discuss in Section 4.1.

Based on the definition of a Hanf normal form, in Section 4.2, we
introduce the problems for consistent learning as well as for PAC
learning that we study in this chapter.

In Section 4.3, we prove that concepts definable in FOCN(P) can
be learned in sublinear time on classes of structures of bounded
degree. As in the previous chapter, we start with an algorithm for the
consistent-learning problem. Then, we modify the algorithm to follow
the Empirical Risk Minimisation rule and explain why this yields a
PAC-learning algorithm.

In Section 4.4, we consider classes of structures where the degree
is not bounded by a fixed number, but the degree of the structures is
still small, that is, polylogarithmic in their size. Due to the differences
between Gaifman and Hanf locality, in contrast to the learning results
for first-order logic from Chapter 3, the results for bounded-degree
structures cannot be easily extended to structures of unbounded but
small degree. By modifying the approach, we can still provide an
algorithm for the consistent-learning problem as well as an algorithm
that follows the Empirical Risk Minimisation rule. Since our approach
is based on Hanf’s Theorem, we have to deal with isomorphism types
of local neighbourhoods in our structures. To handle these within the
desired time bounds, we apply a recent isomorphism test running
in time npolylog(d) for n-vertex graphs of maximum degree d [54]. By
further restricting the degree of the considered structures in terms
of their size, we also obtain a PAC-learning result at the end of the
section.

Except for the last PAC-learning result, all results in this chapter (if
not stated otherwise) have been published in [11].

4.1 hanf locality

For the learnability results for first-order logic with counting, we rely
on normal forms based on Hanf’s locality theorem for first-order
logic [60]. This theorem implies that, to determine whether a finite
structure satisfies a first-order sentence of quantifier rank at most q, it
suffices to determine the number of realisations of neighbourhoods

41

42 learning logics with counting

up to a certain radius within the structure. The version of the theorem
provided by Fagin, Stockmeyer, and Vardi [36] implies that on struc-
tures of degree at most d, it even suffices to determine the number of
these realisations up to a certain threshold. Since, in structures of de-
gree at most d, there are only finitely many types of neighbourhoods
of radius at most r, this condition can be expressed as a first-order
sentence in so-called Hanf normal form.

In this thesis, we use the Hanf normal form for FOCN(P) provided
by Kuske and Schweikardt [69]. Before stating the exact result, we first
introduce the basic building blocks.

Let r ∈ N, k ∈ N⩾1, let A be a relational structure, and let v̄ =

(v1, . . . , vk) ∈
(
U(A)

)k. A sphere formula with k centres of locality radius rSphere formula

is a first-order formula sphA
r, v̄(x1, . . . , xk) such that for every structure

A ′ and every tuple v̄ ′ = (v ′1, . . . , v ′k) ∈
(
U(A ′)

)k, it holds that A ′ |=

sphA
r, v̄[v̄

′] if and only if there is an isomorphism between the two
neighbourhoods that maps the centres upon each other, i. e., there
is an isomorphism π between NA

r (v̄) and NA ′
r (v̄ ′) with π(vi) = v ′i

for all i ∈ [k], or, equivalently, there is an isomorphism between
SAr (v̄) and SA

′
r (v̄ ′). For a fixed signature σ, given a tuple v̄, a radius

r, and local access to a σ-structure A, the time needed to construct
the sphere formula sphA

r, v̄(x1, . . . , xk) is polynomial in the size of the
r-neighbourhood of v̄ [69]. Note that sphere formulas of locality radius
at most r are r-local.

A basic counting term is a counting term of the form #(x).φ(x) in
FOCN(P), where x is a structure variable in vars and φ is a sphere
formula with a single centre. The locality radius of the basic counting
term is the locality radius of the sphere formula.

A numerical condition on occurrences of types with one centre (or numer-
ical oc-type condition) is an FOCN(P)-formula that is built from basic
counting terms and rules (2) and (5)–(9) from Definitions 2.3 to 2.5,
i. e., using number variables and integers, and combining them by
addition, multiplication, numerical predicates from P∪ {P∃}, Boolean
combinations, and quantification of number variables. Its locality ra-
dius is the maximal locality radius of the involved basic counting
terms. Note that numerical oc-type conditions do not have any free
structure variables.Hanf normal form,

hnf-formula A formula is in Hanf normal form for FOCN(P) or an hnf-formula for
FOCN(P) if it is a Boolean combination of numerical oc-type conditions
and sphere formulas. The locality radius of an hnf-formula is the
maximal locality radius of the involved conditions and formulas.

The following result is due to Kuske and Schweikardt [69].

Theorem 4.1 ([69]). Let (P, ar, J.K) be a numerical predicate collection. For
any relational signature σ, any degree bound d ∈N, and any FOCN(P)[σ]-
formula φ, there exists a d-equivalent hnf-formula ψ for FOCN(P)[σ] of
locality radius smaller than

(
2 · bw(φ) + 1

)br(φ) with free(ψ) = free(φ).

4.1 hanf locality 43

Next, analogously to the local types we introduced in Section 2.4,
we introduce local hnf-formulas, and we also provide similar locality
results for them. Local hnf-formulas

Let A be a relational structure, k ∈ N⩾1, r ∈ N, and v̄ ∈
(
U(A)

)k.
Then the local hnf-formulas for FOCN(P) of v̄ with locality radius at most
r in A are

lhfAr (v̄) :=
{
φ(x̄) hnf-formula | A |= φ[v̄],

locality radius of φ is at most r
}

.

We use Kuske’s and Schweikardt’s result to show that FOCN(P)-
formulas are unable to distinguish tuples that have the same local
hnf-formulas (of a certain locality radius).

Lemma 4.2. Let A be a relational structure, let x̄ = (x1, . . . , xk) be a tuple
of structure variables, let κ̄ = (κ1, . . . , κℓ) be a tuple of number variables,
and let φ(x̄, κ̄) be an FOCN(P)-formula. Then, for all v̄, v̄ ′ ∈

(
U(A)

)k and
n̄ = (n1, . . . ,nℓ) ∈ [0, |A|]ℓ, if

lhfAr (v̄) = lhfAr (v̄
′) for r = (2 · bw(φ) + 1)br(φ),

then

A |= φ[v̄, n̄] ⇐⇒ A |= φ[v̄ ′, n̄].

Proof. Let φ ′(x̄) := φ(x̄, n̄), i. e. we replace every occurrence of the
number variable κi in φ with the integer ni for all i. Note that br(φ) =
br(φ ′) and bw(φ) = bw(φ ′). Using Theorem 4.1, we obtain an hnf-
formula ψ(x̄) of locality radius smaller than r =

(
2 · bw(φ) + 1

)br(φ)

that is deg(A)-equivalent to φ ′. Let v̄ and v̄ ′ be k-tuples from A with
lhfAr (v̄) = lhfAr (v̄ ′). We show A |= φ[v̄, n̄] =⇒ A |= φ[v̄ ′, n̄], then the
other direction follows by symmetry.

Assume that A |= φ[v̄, n̄] holds. This implies that A |= φ ′[v̄] and
A |= ψ[v̄] hold as well. Thus, since ψ is an hnf-formula of locality
radius smaller than r, we have ψ ∈ lhfAr (v̄) = lhfAr (v̄ ′), which implies
that A |= ψ[v̄ ′]. By the deg(A)-equivalence between ψ and φ ′, this
shows that A |= φ ′[v̄ ′], which finally implies that A |= φ[v̄ ′, n̄].

The following results help us to reduce the formula and parameter
spaces we have to consider to find consistent hypotheses. The first
lemma states that two tuples satisfy the same local hnf-formulas if
and only if their spheres are isomorphic.

Lemma 4.3. Let A be a relational structure, k ∈N⩾1, r ∈N, and v̄, v̄ ′ ∈(
U(A)

)k. Then, lhfAr (v̄) = lhfAr (v̄ ′) if and only if SAr (v̄) ∼= SAr (v̄
′).

Proof. For the forward direction, assume lhfAr (v̄) = lhfAr (v̄ ′). We have
sphA

r, v̄ ∈ lhfAr (v̄) and hence, sphA
r, v̄ ∈ lhfAr (v̄ ′). Thus, A |= sphA

r, v̄[v̄
′],

which is equivalent to SAr (v̄) and SAr (v̄
′) being isomorphic.

44 learning logics with counting

For the backward direction, assume the spheres SAr (v̄) and SAr (v̄
′)

are isomorphic. Let x̄ = (x1, . . . , xk) and let φ(x̄) be an hnf-formula
of locality radius at most r. Then, φ is a Boolean combination of
numerical oc-type conditions and sphere formulas with locality radius
at most r. We show that A |= φ[v̄] if and only if A |= φ[v̄ ′].

The numerical oc-type conditions in φ do not have any free structure
variables. Hence, their evaluation only depends on the structure and
is independent of the assignment.

The free variables of the sphere formulas used in φ are a subset
of free(φ). Let sphA ′

r ′, w̄(xi1 , . . . , xiℓ) be such a sphere formula used
in φ for some relational structure A ′, an ℓ-tuple w̄ from A ′, and
some locality radius r ′ ⩽ r. It follows from our assumption that
SAr ′(vii , . . . , viℓ) ∼= SAr ′(v

′
ii

, . . . , v ′iℓ). Thus,

A |= sphA
r ′, w̄[vi1 , . . . , viℓ]

⇐⇒ SAr ′(vii , . . . , viℓ) ∼= SA
′

r ′ (w1, . . . ,wℓ)

⇐⇒ SAr ′(v
′
ii

, . . . , v ′iℓ)
∼= SA

′

r ′ (w1, . . . ,wℓ)

⇐⇒ A |= sphA
r ′, w̄[v

′
i1

, . . . , v ′iℓ].

This holds for all sphere formulas in φ. Thus, we have A |= φ[v̄] if and
only if A |= φ[v̄ ′].

The following result is a variant of the Local Composition Lemma for
first-order logic from [55], translated to first-order logic with counting
and local hnf-formulas. It allows us to analyse the parameters we
choose by splitting them into two parts with disjoint neighbourhoods.

Lemma 4.4 (Local Composition Lemma for FOCN(P)). Let A be a
relational structure, k, ℓ, r ∈ N, v̄, v̄ ′ ∈

(
U(A)

)k, and w̄, w̄ ′ ∈
(
U(A)

)ℓ,
such that dist(v̄, w̄) > 2r+ 1, dist(v̄ ′, w̄ ′) > 2r+ 1, lhfAr (v̄) = lhfAr (v̄ ′),
and lhfAr (w̄) = lhfAr (w̄ ′). Then, lhfAr (v̄w̄) = lhfAr (v̄ ′w̄ ′).

Proof. From lhfAr (v̄) = lhfAr (v̄ ′), using Lemma 4.3, it follows that
SAr (v̄) and SAr (v̄

′) are isomorphic. Similarly, we obtain that SAr (w̄)

and SAr (w̄
′) are isomorphic from lhfAr (w̄) = lhfAr (w̄ ′). Because of the

lower bounds for the distances, we have NA
r (v̄) ∪NA

r (w̄) = NA
r (v̄w̄)

and NA
r (v̄

′) ∪NA
r (w̄

′) = NA
r (v̄

′w̄ ′). Hence, by combining the above-
mentioned isomorphisms, we can deduce that SAr (v̄w̄)

∼= SAr (v̄
′w̄ ′).

With Lemma 4.3, it follows that lhfAr (v̄w̄) = lhfAr (v̄ ′w̄ ′).

4.2 learning problems for focn

With the definition of the Hanf normal form at hand, we can now
introduce the learning problems that we consider in this chapter.

Recall the problem Learn-Consistent(k,Φ∗,Φ), where target con-
cepts only use formulas from Φ∗, and algorithms are only allowed to

4.2 learning problems for focn 45

return hypotheses using formulas from Φ. Similarly as for the prob-
lems for first-order logic in Chapter 3, we want to solve a variation of
the problem Learn-Consistent(k,Φ∗,Φ) for certain sets of formulas
Φ∗ and Φ. For first-order logic, we used sets of bounded quantifier
rank. In this chapter, for the logic FOCN(P), we bound the binding
rank and the binding width of the formulas by constants cr and cw.
For cr, cw ∈N, let FOCN(P)[σ, cr, cw] denote the set of all formulas in
FOCN(P)[σ] of binding rank at most cr and binding width at most cw.
Since formulas from FOCN(P) may have free number variables, we al-
low concepts to use number parameters in addition to the parameters
from the structure.

Let k, ℓ, cr, cw ∈N and fix a signature σ. We consider concepts that
can be defined using a formula from

Φ∗ =
{
φ(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw] | |x̄| = k, |ȳ| = ℓ

}
,

combined with parameters that are elements from the structure as well
as number parameters. For a σ-structure A, a formula φ(x̄, ȳ, κ̄) ∈ Φ∗,
and tuples w̄ ∈

(
U(A)

)ℓ and n̄ ∈ [0, |A|]|κ̄|, the resulting hypothesis
is the mapping hAφ,w̄,n̄(x̄) :

(
U(A)

)k → {0, 1} which maps a tuple v̄ ∈(
U(A)

)k to Jφ(v̄, w̄, n̄)KA.
As it turns out, to describe these concepts on a fixed structure, it

actually suffices to use a Boolean combination of sphere formulas up
to a certain locality radius without any number variables or number
parameters. Hence, the formulas that our algorithms return come from
the set

Φ =
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a Boolean combination of sphere formulas

of locality radius at most (2 · cw + 1)cr
}

.

As we will see, with different techniques in Sections 4.3 and 4.4, the
restriction of the locality radius of the returned formula still allows us
to evaluate the hypothesis on new tuples efficiently.

The consistent-learning problem for FOCN(P) is formally defined
as follows.

FOCN(P)-Learn-Consistent(σ,k, ℓ, cr, cw)

Input: σ-structure A, training sequence T ∈
((
U(A)

)k× {0, 1}
)m

Problem: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ,
where φ is a Boolean combination of sphere formulas
of locality radius at most (2 · cw + 1)cr , such that the
hypothesis hAφ,w̄ is consistent with T .
The algorithm may reject if there is no combination of
a formula φ∗(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw] and tuples
w̄∗ ∈

(
U(A)

)ℓ, n̄∗ ∈ [0, |A|]|κ̄| such that the hypothesis
hAφ∗,w̄∗,n̄∗ is consistent with T .

46 learning logics with counting

In Section 4.3, we show that this problem is solvable in sublinear
time on classes of structures of bounded degree. In Section 4.4, with
a different approach, we extend this result to classes of structures of
polylogarithmic degree.

The ERM- and PAC-learning problems for FOCN(P) that we study
in this chapter are defined as follows.

FOCN(P)-Learn-ERM(σ,k, ℓ, cr, cw)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1}
)m

Problem: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ,
where φ is a Boolean combination of sphere formulas of
locality radius at most (2 · cw + 1)cr , such that

errT
(
hAφ,w̄

)
⩽min

{
errT (hAφ∗,w̄∗,n̄∗)

∣∣
φ∗(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw],

w̄∗ ∈ (U(A))ℓ, n̄∗ ∈ [0, |A|]|κ̄|
}

.

FOCN(P)-Learn-PAC(σ,k, ℓ, cr, cw)

Input: structure A, rational numbers ε, δ > 0, probability distri-
bution D on

(
U(A)

)k × {0, 1}

Problem: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ,
where φ is a Boolean combination of sphere formulas
of locality radius at most (2 · cw + 1)cr , such that, with
probability of at least 1− δ over the choice of examples
drawn i.i.d. from D, it holds that

errD
(
hAφ,w̄

)
⩽ ε∗ + ε,

where

ε∗ :=min
{

errD(hAφ∗,w̄∗,n̄∗)
∣∣

φ∗(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw],

w̄∗ ∈ (U(A))ℓ, n̄∗ ∈ [0, |A|]|κ̄|
}

.

In Section 4.3, we modify the algorithm we give for the consistent-
learning problem to show that FOCN(P)-Learn-ERM is solvable in
sublinear time on classes of structures of bounded degree. Afterwards,
we use this result to show that also PAC learning is possible in sublin-
ear time on these classes of structures. In Section 4.4, we extend the
consistent-learning result on classes of structures of polylogarithmic
degree to ERM learning. Furthermore, we provide a PAC-learning
algorithm that runs in sublinear time on classes of structures with a
stricter (but still not constant) degree bound.

4.3 structures of bounded degree 47

4.3 structures of bounded degree

In this section, we present learning results for FOCN(P) on classes of
structures of bounded degree. We start with the consistent-learning
problem. Consistent learning

Theorem 4.5. Let σ be a relational signature, let k, ℓ, cr, cw ∈N, and let
C be a class of structures of degree at most d for some d ∈ N. There is an
algorithm that solves FOCN(P)-Learn-Consistent(σ,k, ℓ, cr, cw) on C

in time (logn+m)O(1) under the logarithmic-cost measure and in time
mO(1) under the uniform-cost measure, where n is the size of the background
structure and m is the length of the training sequence.

Furthermore, the hypotheses returned by the algorithm can be evaluated in
time (logn)O(1) under the logarithmic-cost measure and in constant time
under the uniform-cost measure.

The high-level proof idea is very similar to the one Grohe and Ritzert
[55] presented for the consistent-learning problem for first-order logic.
We use a brute-force algorithm that checks all combinations of certain
choices of formulas and certain choices of parameters.

As we show in Lemma 4.7, for fixed σ,d,k, ℓ, cr, and cw, the number
of formulas we need to check is constant.

To bound the number of parameters to check, we show that it suf-
fices to consider only parameters in a certain neighbourhood around
the training examples. As shown in Figure 4.1, intuitively, this holds
because parameters that are far away from the training examples do
not help to distinguish positive from negative examples. The formal
result is given in Lemma 4.6.

For the rest of this section, let σ be a fixed relational signature,
d,k, ℓ, cr, cw ∈ N, let r := (2 · cw + 1)cr , let C be a class of structures
of degree at most d, and let A be a structure from C. Let Φ∗, i. e. the
set of formulas that our target concepts are based upon, be defined as
in the last section, that is,

Φ∗ =
{
φ(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw] | |x̄| = k, |ȳ| = ℓ

}
.

For Φ, that is, the set of formulas our algorithms are allowed to return
in a hypothesis, we can even use a restriction of the set from the last
section and set

Φd :=
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a Boolean combination of sphere formulas

of locality radius at most r

based on spheres of degree at most d
}

.

For a training sequence T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
and a radius

r ′ ∈N, let NA
r ′(T) :=

⋃
i∈[m]N

A
r ′(v̄i).

48 learning logics with counting

v1

v2 v3

v4

NA
r (v1)

NA
r (v2) NA

r (v3)

NA
r (v4)

w

NA
r (w)

positive
example

negative
examples parameter

Figure 4.1: One positive and three negative examples from a training se-
quence as well as a parameter with their local neighbourhoods.
The vertices v1 and v2 can easily be distinguished by a formula
since they have different local types. The vertices v1 and v3 have
the same local types and even if we take the parameter w into
consideration, the local types of the tuples (v1,w) and (v3,w)
are still the same since the parameter is too far away from both
vertices v1 and v3. Thus, there is no way to distinguish v1 and
v3 using w and a formula with locality radius at most r. The
only way to distinguish vertices of the same local type is to have
a parameter close to one of the vertices, as shown for v4. This
argumentation is formalised in the proof of Lemma 4.6.

Lemma 4.6. Let T ∈
((
U(A)

)k × {0, 1}
)m

be a training sequence and let

φ∗ ∈ Φ∗, w̄∗ ∈
(
U(A)

)ℓ, and n̄∗ ∈ [0, |A|]|κ̄| be such that the hypothesis
hAφ∗,w̄∗,n̄∗ is consistent with T . Then, there is a formula φ ∈ Φd and a tuple
w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ such that the hypothesis hAφ,w̄ is consistent with T .

Proof. Let T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
, φ∗, w̄∗ = (w∗

1, . . . ,w∗
ℓ), and

n̄∗ be as given in the lemma. We iteratively select vertices w(i) from
the parameters w∗

1, . . . ,w∗
ℓ that have distance at most 2r+ 1 from the

examples or the already selected vertices. This process is repeated
for s steps until all remaining parameters are too far away (or all
parameters have already been selected). For the tuple w̄ that we are
looking for in this proof, we use these selected parameters and omit
the others.

Formally, to select the parameters, we start with the neighbour-
hood N(0) := NA

2r+1(T) of radius 2r + 1 around the examples and
select a vertex w ∈ {w∗

1, . . . ,w∗
ℓ } ∩N(0). If there is no such vertex,

we set s := 0 and stop this process. Otherwise, we set w(1) := w,
N(1) := N(0) ∪NA

2r+1(w), and continue. For i ⩾ 2, we select a vertex
w ∈ {w∗

1, . . . ,w∗
ℓ } \ {w

(1), . . . ,w(i−1)} that is contained in the neigh-

4.3 structures of bounded degree 49

bourhood N(i−1). If there is no such vertex, we set s := i − 1 and
stop. Otherwise, we set w(i) := w, N(i) := N(i−1) ∪NA

2r+1(w), and
continue. W.l.o.g. let w(i) = w∗

i for i ∈ [s]. Let w̄in := (w∗
1, . . . ,w∗

s) and
w̄out := (w∗

s+1, . . . ,w∗
ℓ). We let ȳin := (y1, . . . ,ys) and choose

φ(x̄, ȳ) :=
∨

i∈[m], λi=1

sphA
r, v̄iw̄in(x̄, ȳin).

The formula φ is a Boolean combination of sphere formulas of locality
radius at most r based on spheres of degree at most d and thus,
φ ∈ Φd. We turn w̄in = (w̄∗

1, . . . , w̄∗
s) into a tuple w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ

by choosing an arbitrary w ∈ NA
(2r+1)ℓ(T) and filling the missing

(ℓ− s) positions with the vertex w.
It remains to show that the hypothesis hAφ,w̄ is consistent with T . If

λi = 1, then by the construction of hAφ,w̄ (especially the construction
of φ), it holds that hAφ,w̄(v̄i) = 1. For the other direction, we use the
following claim.

Claim. Let i, j ∈ [m] such that A |= sphA
r, v̄iw̄in [v̄jw̄

in]. Then λi = λj.

Proof. First, from A |= sphA
r, v̄iw̄in(v̄jw̄

in), it follows that SAr (v̄iw̄in) ∼=

SAr (v̄jw̄
in). Using Lemma 4.3, we obtain lhfAr (v̄iw̄in) = lhfAr (v̄jw̄in).

Second, from the construction of w(i) and N(i), it follows that
NA
2r+1(v̄p) ⊆ N(0) ⊆ N(s) for all p ∈ [m], NA

2r+1(w̄
∗
p) ⊆ N(p) ⊆

N(s) for all p ∈ [s], and w̄∗
p ̸∈ N(s) for all p ∈ [s + 1, ℓ]. Thus,

distA(v̄pw̄in, w̄out) > 2r+ 1 for every p ∈ [m].
Using Lemma 4.4 and w̄∗ = w̄inw̄out, we obtain lhfAr (v̄iw̄∗) =

lhfAr (v̄jw̄∗). With Lemma 4.2 and our choice of the radius r, it then
follows that

A |= φ∗[v̄i, w̄∗, n̄∗] ⇐⇒ A |= φ∗[v̄j, w̄∗, n̄∗].

Since hAφ∗,w̄∗,n̄∗ is assumed to be consistent with T , this implies λi =
λj. ⌟

If hAφ,w̄(v̄i) = 1, then there is some p ∈ [m] such that λp = 1 and
A |= sphA

r, v̄pw̄in [v̄iw̄
in]. Using the claim, we obtain λi = λp = 1. Thus,

all in all, hAφ,w̄ is consistent with T .

This result shows that we only have to look for parameters in a
local neighbourhood around the examples. In structures of bounded
degree, this drastically reduces the number of parameters we have to
check. Next, we bound the number of formulas we have to consider.

Lemma 4.7. For fixed σ,d,k, ℓ, cr, and cw, up to equivalence, the number
of formulas in Φd is constant.

Proof. In σ-structures of degree at most d, for r = (2 · cw + 1)cr , the
number of elements in an r-sphere with (k+ ℓ) centres can be bounded
by (k + ℓ) · µd(r) with µ0(r) := 1, µ1(r) := 2, and µd(r) := 1 + d ·

50 learning logics with counting

Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA

(2r+1)ℓ(T)

2: for all w̄ ∈ Nℓ do
3: for all φ ∈ Φd do
4: consistent← true
5: for all i ∈ [m] do
6: if Jφ(v̄i, w̄)KN

A
r (v̄iw̄) ̸= λi then

7: consistent← false
8: break
9: if consistent then

10: return (φ, w̄)
11: reject

Figure 4.2: Learning algorithm Adcon for Theorem 4.5

∑r
i=0(d− 1)

i for d ⩾ 2. We have µ2(r) = 2r+ 1 and, for d > 2, one
can show that µd(r) ⩽ (d− 1)r+1. Hence, since σ is fixed, there is
a constant number of non-isomorphic spheres of radius at most r
in such σ-structures. Thus, the number of sphere formulas based on
those spheres, up to equivalence, is also constant. Since Φd consists
of all Boolean combinations of these sphere formulas, the number of
non-equivalent formulas in Φd is constant as well.

With a bound on the number of parameters and a constant num-
ber of formulas, it remains to show that we can check every single
hypothesis efficiently. For this, we use the following result due to
Seese [84].

Theorem 4.8 ([84]). Let d ∈N. On the class C of relational structures of
degree at most d, the problem p-FO-Mc(C) is fixed-parameter linear, that is,
there is an algorithm AMC and a function f : N→N such that AMC decides
p-FO-Mc(C) and, on input (A,φ), the algorithm runs in time f(|φ|) · |A|.
under the uniform-cost measure. Under the logarithmic-cost measure, the
algorithm runs in time f(|φ|) · |A| log |A|.

We can now prove the consistent-learning result.

Proof of Theorem 4.5. We show that the algorithm given in Figure 4.2
fulfils the requirements of the theorem. The algorithm goes through all
tuples w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ and all non-equivalent formulas φ ∈ Φd.

A hypothesis hAφ,w̄ = Jφ(x̄, ȳ)KA(x̄, w̄) is consistent with the training
sequence T if and only if Jφ(v̄i, w̄)KA = λi for all i ∈ [m]. SinceΦd only
contains Boolean combinations of sphere formulas of locality radius
at most r, all formulas in Φd are r-local. Thus, hAφ,w̄ is consistent with
T if and only if Jφ(v̄i, w̄)KN

A
r (v̄iw̄) = λi for every i ∈ [m]. Hence, if the

algorithm returns a hypothesis, then it is consistent. Furthermore, if
there is a consistent hypothesis hAφ∗,w̄∗,n̄∗ using a formula φ∗(x̄, ȳ, κ̄) ∈

4.3 structures of bounded degree 51

Φ∗ and tuples w̄∗ ∈
(
U(A)

)ℓ, and n̄∗ ∈ [0, |A|]|κ̄|, then, by Lemma 4.6,
there is a consistent hypothesis among the ones we check, so the
algorithm returns a hypothesis.

It remains to show that the algorithm satisfies the running time
requirements while only using local access to the structure A. For all
v̄ ∈

(
U(A)

)k and w̄ ∈
(
U(A)

)ℓ, as discussed in the proof of Lemma 4.7,
the size of the neighbourhood NA

r (v̄w̄) can be bounded by (k+ ℓ) ·
µd(r), so it is constant for fixed d,k, ℓ, r. Hence, under the logarithmic-
cost measure, the neighbourhood can be computed in time O(logn)
using only local access. Under the uniform-cost measure, it takes
constant time to compute the neighbourhood. By Theorem 4.8, on an
already computed constant-size neighbourhood, the evaluation of the
hypothesis in line 6 runs in constant time. The algorithm checks up to
|N|
ℓ · |Φd| ∈ O

(
(m · k · d(2r+1)ℓ+1)ℓ · |Φd|

)
hypotheses on m examples

with N = NA
(2r+1)ℓ(T) and where |Φd| only considers non-equivalent

formulas. All in all, since d, k, ℓ, r are considered constant, the running
time of the algorithm is in (m+ logn)O(1) under the logarithmic-cost
measure, in mO(1) under the uniform-cost measure, and it only uses
local access to the structure A.

To evaluate the hypothesis returned by the algorithm on a tuple
v̄, we only have to evaluate it within the neighbourhood NA

r (v̄w̄),
using only local access to A. Analogously to the consistency check, the
hypothesis can be evaluated in time (logn)O(1) under the logarithmic-
cost measure and in constant time under the uniform-cost measure.

In the proof, we rely on Φd being a constant-sized set of formulas
which is expressive enough to describe every concept that can be
described using a formula from Φ∗. We obtain the expressiveness via
formulas in Hanf normal form. However, to bound the number of
these formulas, we need to bound the degree of the structures we
consider in Lemma 4.7. Without this bound on the degree, even in
structures of only logarithmic degree, the bound on the number of
formulas in Φd would be superlinear in the size of the structure, so
this would not yield a sublinear-time learning algorithm any more.
Thus, in Section 4.4, we use a different technique to prove consistent
learnability on structures of polylogarithmic degree.

Next, we extend Theorem 4.5 to the ERM problem. Empirical Risk
Minimisation

Theorem 4.9. Let σ be a relational signature, let k, ℓ, cr, cw ∈N, and let
C be a class of structures of degree at most d for some d ∈ N. There is an
algorithm that solves FOCN(P)-Learn-ERM(σ,k, ℓ, cr, cw) on C in time
(logn +m)O(1) under the logarithmic-cost measure and in time mO(1)

under the uniform-cost measure, where n is the size of the background
structure and m is the length of the training sequence.

52 learning logics with counting

Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA

(2r+1)ℓ(T)

2: errmin ← |T |+ 1

3: for all w̄ ∈ Nℓ do
4: for all φ ∈ Φd do
5: err← 0

6: for all i ∈ [m] do
7: if Jφ(v̄i, w̄)KN

A
r (v̄iw̄) ̸= λi then

8: err← err+ 1

9: if err < errmin then
10: errmin ← err

11: (φmin, w̄min)← (φ, w̄)
12: return (φmin, w̄min)

Figure 4.3: Learning algorithm AdERM for Theorem 4.9

Furthermore, the hypotheses returned by the algorithm can be evaluated in
time (logn)O(1) under the logarithmic-cost measure and in constant time
under the uniform-cost measure.

To prove this result, we use the following corollary of Lemma 4.6.

Corollary 4.10. Let T ∈
((
U(A)

)k × {0, 1}
)m

be a training sequence

and let φ∗ ∈ Φ∗, w̄∗ ∈
(
U(A)

)ℓ, and n̄∗ ∈ [0, |A|]|κ̄|. Then, there is a
formula φ ∈ Φd and a tuple w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ such that errT

(
hAφ,w̄

)
⩽

errT
(
hAφ∗,w̄∗,n̄∗

)
.

Proof. Let ε := errT
(
hAφ∗,w̄∗,n̄∗

)
. Then, there is a sequence S that is a

subsequence of T of length (1− ε) · |T | such that hAφ∗,w̄∗,n̄∗ is consistent
with S. By Lemma 4.6, there is also a formula φ ∈ Φd and a tuple
w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ such that hAφ,w̄ is consistent with S. Thus, we have

errT
(
hAφ,w̄

)
⩽ ε = errT

(
hAφ∗,w̄∗,n̄∗

)
.

Using this corollary, we can now prove Theorem 4.9.

Proof of Theorem 4.9. We show that the algorithm given in Figure 4.3
fulfils the requirements of the theorem. The algorithm goes through
all tuples w̄ ∈

(
NA

(2r+1)ℓ(T)
)ℓ and all non-equivalent formulas φ ∈

Φd and counts the number of errors that hAφ,w̄ = Jφ(x̄, ȳ)KA(x̄, w̄)
makes on T . Then, it returns a hypothesis with minimal training
error. By Corollary 4.10, the hypothesis returned by the algorithm
fulfils the requirements of the problem FOCN(P)-Learn-ERM. The
running time analysis is analogous to the one presented in the proof
of Theorem 4.5.

Finally, we obtain agnostic PAC learnability of FOCN(P) via the
ERM algorithm.Agnostic PAC

learning

4.3 structures of bounded degree 53

Theorem 4.11. Let σ be a relational signature, let k, ℓ, cr, cw ∈ N, and
let C be a class of structures of degree at most d for some d ∈ N. There
is an algorithm that solves FOCN(P)-Learn-PAC(σ,k, ℓ, cr, cw) on C in
time

(
log |A|+ log 1δ +

1
ε

)O(1), under the logarithmic-cost as well as the
uniform-cost measure, where n is the size of the background structure.

Furthermore, the hypotheses returned by the algorithm can be evaluated in
time (logn)O(1) under the logarithmic-cost measure and in constant time
under the uniform-cost measure.

Proof. Let A ∈ C be a background structure of degree at most d.
We consider the concept class

H∗ =
{
hAφ,w̄,n̄

∣∣ φ(x̄, ȳ, κ̄) ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ, n̄ ∈ [0, |A|]|κ|
}

and the hypothesis class

H =
{
hAφ,w̄

∣∣ φ(x̄, ȳ) ∈ Φd, w̄ ∈
(
U(A)

)ℓ}.

Since, by Lemma 4.7, Φd contains (up to equivalence) only finitely
many formulas, the number of hypotheses in H is bounded by s · |A|ℓ

for some constant s.

Claim. It holds that H∗ ⊆ H.

Proof. Let h∗ := hAφ∗,w̄∗,n̄∗ ∈ H∗. We consider the training sequence
T that contains an example

(
v̄,h∗(v̄)

)
for every k-tuple v̄ from A.

Then, by Lemma 4.6, there is a formula φ ∈ Φd and a tuple w̄ ∈(
U(A)

)ℓ such that the hypothesis hAφ,w̄ ∈ H is consistent with T . By
the definition of T , we have h∗ = hAφ,w̄, and thus, h∗ ∈ H. ⌟

By using the claim, we can also bound the number of hypotheses in
H∗ by s · |A|ℓ. Our algorithm that solves FOCN(P)-Learn-PAC works
as follows.

Given local access to a background structure A, oracle access to the
size |A| of the structure, oracle access to a probability distribution D on(
U(A)

)k × {0, 1}, and given rational numbers ε, δ > 0, our algorithm
queries

m(|A| , ε, δ) :=

⌈
2 log(2s · |A|ℓ /δ)

ε2

⌉

many examples from D. Then, it runs AdERM on the resulting training
sequence.

Next, we show that this algorithm indeed solves the problem
FOCN(P)-Learn-PAC. Let D be a distribution over

(
U(A)

)k × {0, 1}
and let h∗ ∈ H∗ be a hypothesis that minimises the generalisation
error, that is, errD(h∗) = minh ′∈H∗ errD(h ′). Let T be the training
sequence of length m(|A| , ε, δ) drawn i.i.d. from D by our algorithm,
and let h ∈ H be the hypothesis returned by AdERM on input T . By
Theorem 4.9, the hypothesis h fulfils errT (h) ⩽ errT (h∗).

54 learning logics with counting

Furthermore, by the Uniform Convergence Lemma (Lemma 3.9),
with probability at least 1− δ, it holds that

∣∣ errT (h ′) − errD(h ′)
∣∣ ⩽ ε

2

for all h ′ ∈ H. This especially holds for h as well as for h∗. Hence,

errD(h) ⩽ errT (h) +
ε

2
⩽ errT (h∗) +

ε

2
⩽ errD(h∗) +

ε

2
+
ε

2

with probability at least 1− δ. This is exactly the requirement we have
in FOCN(P)-Learn-PAC for the returned hypothesis.

The number m(|A| , ε, δ) of queried examples can be bounded by
O
(

log(|A|/δ)

ε2

)
. Thus, by Theorem 4.9, we can bound the running time

of our algorithm by
(
log |A|+ log 1δ +

1
ε

)O(1)
under the logarithmic-

cost as well as the uniform-cost measure. The evaluation time of the
hypothesis given in the theorem follows directly from Theorem 4.9.

4.4 structures of small degree

In this section, we extend the sublinear-time results for consistent
learning and the ERM problem of the previous section to classes of
structures of at most polylogarithmic degree. At the end of this section,
we give a bound on the degree of a structure in terms of its size such
that PAC-learning is still possible in sublinear time. We start with the
extension of the consistent-learning result.Consistent learning

Theorem 4.12. Let σ be a relational signature and let k, ℓ, cr, cw ∈N. There
is an algorithm that solves FOCN(P)-Learn-Consistent(σ,k, ℓ, cr, cw)
in time (logn+m)O(1) · dpolylogd under the logarithmic-cost measure and
in time mO(1) · dpolylogd under the uniform-cost measure, where n is the
size of the background structure, d is the degree of the background structure,
and m is the length of the training sequence. Furthermore, the hypotheses
returned by the algorithm can be evaluated with the same time bound.

On classes of structures of polylogarithmic degree, Theorem 4.12

implies that consistent model-learning is possible in sublinear time.

Corollary 4.13. Let σ be a relational signature, let k, ℓ, cr, cw ∈N, and let
C be a class of structures of polylogarithmic degree. There is an algorithm that
solves FOCN(P)-Learn-Consistent(σ,k, ℓ, cr, cw) on C in time sublin-
ear in the size of the background structure and polynomial in the length of
the training sequence, under the logarithmic-cost as well as the uniform-cost
measure. The hypotheses returned by the algorithm can be evaluated with the
same bound on the running time.

In the proof of Theorem 4.12, to check the consistency of a hypo-
thesis and to evaluate it on new tuples, we use the following result on
isomorphism testing due to Grohe, Neuen, and Schweitzer [54].

Theorem 4.14 ([54]). There is a constant c such that for all σ-structures
A1 and A2, it can be decided in time nO(a·(logd)c) whether A1 and A2 are
isomorphic, where n := max{|A1| , |A2|}, d := max{deg(A1), deg(A2)}, and
a := maxR∈σ ar(R).

4.4 structures of small degree 55

Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA

(2r+1)ℓ(T)

2: for all w̄ = (w1, . . . ,wℓ) ∈ Nℓ do
3: for all s ∈ [0, ℓ] do
4: consistent← true
5: w̄in ← (w1, . . . ,ws)
6: for all i ∈ [m] do
7: Si ← SAr (v̄iw̄

in)

8: for all i, j ∈ [m] with λi = 0 and λj = 1 do
9: if Si ∼= Sj then

10: consistent← false
11: break
12: if consistent then
13: φ(x̄, ȳ)←

∨
i∈[m], λi=1

sphA
r, v̄iw̄in(x̄,y1, . . . ,ys)

14: return (φ, w̄)
15: reject

Figure 4.4: Learning algorithm Acon for Theorem 4.12

We assume that we are not only given the formula for the hypothesis,
but also a description of the spheres, i. e. the relational structures, that
are the basis for the sphere formulas used in the hypothesis. Then,
to evaluate the hypothesis, for every sphere formula used in the
hypothesis, we determine whether the sphere of the sphere formula
is isomorphic to the sphere around the elements given to the sphere
formula. The label defined by the hypothesis is then simply a Boolean
combination of the determined truth values. We analyse the running
time of this procedure in the following proof of the consistent-learning
result.

Proof of Theorem 4.12. The pseudocode for our algorithm is shown in
Figure 4.4. As in the last section, let r := (2 · cw + 1)cr . The algorithm
is based on the proof of Lemma 4.6. It goes through all tuples w̄ ∈(
NA

(2r+1)ℓ(T)
)ℓ, and, for all s ∈ [0, ℓ], it considers the tuple consisting

of the first s entries of w̄. For these values, it checks whether the
hypothesis (φ, w̄) is consistent with the training sequence, where φ
is the formula given in Lemma 4.6, that is, the disjunction of sphere
formulas around the positive examples and the s-tuple derived from
w̄.

First, we show that every hypothesis returned by the algorithm is
consistent with the training sequence. Let (v̄i, λi) ∈ T . By the con-
struction of φ, we have A |= φ[v̄i, w̄] (and thus hAφ,w̄(v̄i) = 1) if and
only if there is some j with λj = 1 such that A |= sphA

r, v̄jw̄in [v̄i, w̄in],
or, equivalently, SAr (v̄i) ∼= SAr (v̄j). If λi = 1, then this is trivially the
case, so the hypothesis correctly classifies the tuple v̄i as positive. If

56 learning logics with counting

λi = 0, then the checks in lines 8–11 of the algorithm guarantee that
there is no positive example with an isomorphic sphere, and hence the
hypothesis correctly classifies the tuple v̄i as negative. All in all, this
shows that every hypothesis returned by the algorithm is consistent.

For the other direction, we assume that there is a formula φ∗ ∈ Φ∗

and tuples w̄∗ ∈
(
U(A)

)ℓ and n̄∗ ∈ [0, |A|]|κ̄| such that the hypo-
thesis hAφ∗,w̄∗,n̄∗ is consistent with T . Then it follows from the proof
of Lemma 4.6 that there is a tuple w̄ among the ones we check such
that the resulting hypothesis is consistent with the training sequence.
Thus, our algorithm returns a hypothesis in these cases.

It remains to show that the algorithm satisfies the running time
requirements while only using local access to the structure A. Ana-
logously to the proof of Theorem 4.8, for fixed k, ℓ, cr, and cw, the
size of the set N computed in line 1 is polynomial in m and d. It can
be computed in time (logn+m+ d)O(1) under the logarithmic-cost
measure and in time (m+ d)O(1) under the uniform-cost measure,
using only local access to the background structure. For every single
choice of w̄ and s, the size of a single sphere Si is polynomial in d
and it can be computed in time polynomial in d and logn under the
logarithmic-cost measure and polynomial in d under the uniform-cost
measure. By Theorem 4.14, every single isomorphism test between
the spheres runs in time dpolylogd. All in all, the algorithm runs in
time (logn+m)O(1)dpolylogd under the logarithmic-cost measure and
in time mO(1)dpolylogd under the uniform-cost measure, while only
using local access.

To evaluate the hypothesis returned by the algorithm on a new
tuple v̄, we compute the r-sphere around v̄w̄in and check whether it
is isomorphic to one of the spheres used in the returned formula φ.
Thus, we obtain the same running time bounds as for the learning
algorithm.

Next, we extend this result to the ERM problem.Empirical Risk
Minimisation

Theorem 4.15. Let σ be a relational signature and let k, ℓ, cr, cw ∈ N.
There is an algorithm that solves FOCN(P)-Learn-ERM(σ,k, ℓ, cr, cw) in
time (logn+m)O(1) · dpolylogd under the logarithmic-cost measure and
in time mO(1) · dpolylogd under the uniform-cost measure, where n is the
size of the background structure, d is the degree of the background structure,
and m is the length of the training sequence. Furthermore, the hypotheses
returned by the algorithm can be evaluated with the same time bound.

Proof. The pseudocode for our algorithm AERM is shown in Figure 4.5.
Let r := (2 · cw + 1)cr . The algorithm goes through all tuples w̄ ∈(
NA

(2r+1)ℓ(T)
)ℓ. For all s ∈ [0, ℓ], it considers the tuple w̄in consisting of

the first s entries of w̄. For every sphere Si = SAr (v̄iw̄
in), the algorithm

counts the number err+i of errors the hypothesis would make on the
training sequence if we would include the sphere formula for Si in
the hypothesis. Additionally, it also counts the number err−i of errors

4.4 structures of small degree 57

Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA

(2r+1)ℓ(T)

2: errmin ← |T |+ 1

3: for all w̄ = (w1, . . . ,wℓ) ∈ Nℓ do
4: for all s ∈ [0, ℓ] do
5: err← 0

6: w̄in ← (w1, . . . ,ws)
7: for all i ∈ [m] do
8: Si ← SAr (v̄iw̄

in)

9: for all i ∈ [m] do
10: err+i ←

∣∣{j ∈ [m] | Si ∼= Sj and λj = 0}
∣∣

11: err−i ←
∣∣{j ∈ [m] | Si ∼= Sj and λj = 1}

∣∣
12: err← err+ min {err+i , err−i }
13: if err < errmin then
14: errmin ← err

15: w̄min ← w̄

16: φmin(x̄, ȳ)←
∨

i∈[m],
err+i ⩽err

−
i

sphA
r, v̄iw̄in(x̄,y1, . . . ,ys)

17: return (φmin, w̄min)

Figure 4.5: Learning algorithm AERM for Theorem 4.15

the hypothesis would make on the training sequence if we would
leave out the sphere formula for Si. The sphere formula is included
in the hypothesis if err+i ⩽ err−i . For every combination of a tuple
w̄ and a number s, the algorithm sums up the number of errors the
hypothesis would make on the training sequence and in the end, it
returns the hypothesis with the minimum number of errors.

Claim. Let (φmin, w̄min) be the hypothesis returned by the algorithm.
Then, for all φ∗(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw], w̄∗ ∈ (U(A))ℓ, and n̄∗ ∈
[0, |A|]|κ̄|, it holds that errT

(
hAφmin,w̄min

)
⩽ errT

(
hAφ∗,w̄∗,n̄∗

)
.

Proof. Choose φ∗(x̄, ȳ, κ̄) ∈ FOCN(P)[σ, cr, cw], w̄∗ ∈ (U(A))ℓ, and
n̄∗ ∈ [0, |A|]|κ̄| such that errT

(
hAφ∗,w̄∗,n̄∗

)
is minimal. Let T∗ be the sub-

sequence of T that contains exactly those examples that are correctly
classified by h∗ := hAφ∗,w̄∗,n̄∗ . It suffices to show that, for all examples
(v̄i, λi) in T∗, we have that err+i ⩽ err−i if λi = 1 and err+i ⩾ err−i
if λi = 0. If we would have err+i > err−i and λi = 1, then using
φ := φ∗ ∧¬sphA

r, v̄iw̄in would yield a hypothesis that is consistent with
more examples than h∗, which contradicts the optimality of h∗. On
the other hand, if we would have err+i < err−i and λi = 0, then we
could use φ := φ∗ ∨ sphA

r, v̄iw̄in . ⌟

The analysis of the running time of the algorithm AERM is analogous
to the analysis of the algorithm Acon in the proof of Theorem 4.12 and
it yields the same result.

58 learning logics with counting

Analogously to the consistent-learning case, on classes of struc-
tures of polylogarithmic degree, Theorem 4.15 implies that the ERM
problem is solvable in sublinear time.

Corollary 4.16. Let σ be a relational signature, let k, ℓ, cr, cw ∈N, and let
C be a class of structures of polylogarithmic degree. There is an algorithm
that solves FOCN(P)-Learn-ERM(σ,k, ℓ, cr, cw) on C in time sublinear
in the size of the background structure and polynomial in the length of the
training sequence, under the logarithmic-cost as well as the uniform-cost
measure. The hypotheses returned by the algorithm can be evaluated with the
same bound on the running time.

To turn the algorithm AERM into a sublinear-time PAC-learning
algorithm, we want to find a sublinear bound on the number of ex-
amples needed to fulfil the probability bounds. In contrast to the
approach in the last section, the formulas we use in the hypotheses
do not come from a constant-sized set of formulas any more. Instead,
the number of non-equivalent disjunctions of sphere formulas is ex-
ponential in the number of non-isomorphic spheres, which is again
exponential in their size. This leads to the following result.Agnostic PAC

learning
Theorem 4.17. Let σ be a relational signature, let k, ℓ, cr, cw ∈ N, let
a := maxR∈σ ar(R), r := (2 · cw + 1)cr , and let C be a class of struc-

tures A of degree at most
(
log(log |A|)

) 1
(r+1)·a . There is an algorithm that

solves FOCN(P)-Learn-PAC(σ,k, ℓ, cr, cw) on C in time sublinear in the
size of the background structure and polynomial in log 1δ and 1

ε under the
logarithmic-cost as well as the uniform-cost measure.

Furthermore, the hypotheses returned by the algorithm can be evaluated
with the same bound on the running time.

Proof. Let A ∈ C be a background structure of degree d with d ⩽(
log(log |A|)

) 1
(r+1)·a . We consider the concept class

H∗ =
{
hAφ,w̄,n̄

∣∣ φ(x̄, ȳ, κ̄) ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ, n̄ ∈ [0, |A|]|κ|
}

.

Running on A, the algorithm AERM only returns formulas from the set

Φd :=
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a disjunction of sphere formulas

of locality radius at most r

based on spheres of degree at most d
}

.

Thus, we consider the hypothesis class

H =
{
hAφ,w̄

∣∣ φ(x̄, ȳ) ∈ Φd, w̄ ∈
(
U(A)

)ℓ}.

As in the proof of Theorem 4.11, it holds that H∗ ⊆ H.
Next, we bound number of non-equivalent hypotheses in H and

thus also in H∗. As discussed in Lemma 4.7, in a structure of degree

4.4 structures of small degree 59

at most d, a sphere of radius at most r with (k+ ℓ) centres has size
at most s := (k+ ℓ) · µd(r) ∈ O

(
dr+1

)
⊆ O

(
(log(log(|A|)))

1
a

)
. Thus,

over a signature σ, the number of non-isomorphic spheres of radius
at most r with (k + ℓ) centres can be bounded by

∏
R∈σ 2

sar(R)
=

2

(∑
R∈σ s

ar(R)
)
⩽ 2|σ|·s

a
. The number of non-equivalent disjunctions of

sphere formulas based on such spheres is at most exponential in the
number of non-isomorphic spheres. Hence, the setΦd contains at most
O
(
|A||σ|

)
non-equivalent formulas, and the number of non-equivalent

hypotheses in H and H∗ is bounded by c · |A|ℓ+|σ| for some constant
c.

The remainder of this proof is analogous to the proof of The-
orem 4.11. We use Lemma 3.9 to bound the number of examples
needed for a PAC-learning algorithm by

m(|A| , ε, δ) :=

⌈
2 log(2c · |A|ℓ+|σ| /δ)

ε2

⌉
.

Then, it suffices to query m(|A| , ε, δ) examples from the distribution
D and run AERM on the resulting training sequence. With the bound
on the number of training examples, Theorem 4.15 yields the desired
running time.

5
W E I G H T E D S T R U C T U R E S A N D L O G I C S W I T H
W E I G H T A G G R E G AT I O N

In machine learning, input data is often given via numerical values
which are contained in or extracted from a more complex structure,
such as a relational database (cf., [51, 58, 81, 83]). The logic-based
learning results obtained so far, however, only deal with pure relational
structures. Thus, they are often too weak for describing meaningful
classifiers for real-world machine-learning problems.

To overcome this issue and combine relational and numerical in-
formation, we are interested in hybrid structures, which extend rela-
tional ones by numerical values. Just as in commonly used relational
database systems, to utilise the power of such hybrid structures, the
classifiers we consider should be allowed to use different methods
to aggregate the numerical values. Our main contribution in this
chapter is the design of a logic that is capable of expressing meaning-
ful machine-learning problems and, at the same time, well-behaved
enough to have similar locality properties as first-order logic, which
enable us to learn concepts in sublinear time on structures of small
degree.

For that, in Section 5.1, we introduce a new logic, called first-order
logic with weight aggregation (FOWA). It operates on weighted structures,
which extend ordinary relational structures by assigning weights, i. e.
elements from a particular abelian group or ring, to tuples present
in the structure. Such weighted structures were recently considered
by Toruńczyk [88], who studied the complexity of query evaluation
problems for the related logic FO[C] and its fragment FOG[C]. Our
logic FOWA, however, is closer to the syntax and semantics of the
extension FOC of first-order logic with counting quantifiers described
in Section 2.3. This connection enables us to achieve locality results for
the fragments FOW1 and FOWA1 of FOWA similar to those obtained
in [56, 70]. Specifically, in Sections 5.2 and 5.3, we achieve Feferman-
Vaught decompositions and a Gaifman normal form for FOW1. In
Section 5.4, we provide a localisation theorem for the more expressive
logic FOWA1. We give examples illustrating that FOWA1 can express
concepts relevant for various machine-learning scenarios. Using the
locality properties, we provide learnability results for concepts defin-
able in FOWA1 in Chapter 6. This generalises the results described in
Chapter 3 that Grohe and Ritzert [55] obtained for first-order logic to
the substantially more expressive logic FOWA1.

The results of this and the next chapter have been published in [13].

61

62 weighted structures and logics with weight aggregation

7

2

12

20

133

5

Alice (33)

Bob (28)

Carol (71) Dan (42)

Emma (17)

Figure 5.1: An excerpt of a social network1, based on the network given in
Example 3.1. An edge between two users indicates that they are
friends. The weight for each user represents their age and the
weight of the edges indicates the length of the users’ friendship
(in years).

5.1 first-order logic with weight aggregation

In this section, we introduce weighted structures as well as the logic
FOWA and its fragments FOW1 and FOWA1.Weighted structures

Let σ be a signature and let S be a collection of rings and/or abelian
groups. Let W be a finite set of weight symbols, such that each w ∈
W has an associated arity ar(w) ∈ N⩾1 and a type type(w) ∈ S. A
(σ, W)-structure is a σ-structure A that is enriched, for every w ∈ W,
by an interpretation wA :

(
U(A)

)ar(w) → type(w), which satisfies the
following locality condition: if wA(v1, . . . , vk) ̸= 0S for S := type(w),
k := ar(w), and v1, . . . , vk ∈ U(A), then v1 = · · · = vk or all of the
vertices v1, . . . , vk are contained in one tuple of a relation of A. More
formally, in that case, there exists a relation symbol R ∈ σ and a
tuple (w1, . . . ,war(R)) ∈ R(A) such that {v1, . . . , vk} ⊆ {w1, . . . ,war(R)}.
Hence, if wA(v1, . . . , vk) ̸= 0S, then the elements in {v1, . . . , vk} form a
clique in the Gaifman graph of A.

All notions that were introduced in Section 2.3 for σ-structures carry
over to (σ, W)-structures in the obvious way. Specifically, if A is a
(σ, W)-structure and σ ′ is a signature with σ ′ ⊇ σ, then a σ ′-expansion
of A is a (σ ′, W)-structure A ′ with U(A ′) = U(A), R(A ′) = R(A) for all
R ∈ σ, and wA

′
= wA for all w ∈W.

We will use the following as running examples throughout this
section.

Example 5.1. (a) Recall the network of friends from Example 3.1. Let
(Q,+, ·) be the field of rationals and let W contain the unary weight
symbol age and the binary weight symbol length of type (Q,+, ·)
indicating the age of a user and the length of the friendship

1 Avatars designed by Freepik from Flaticon

5.1 first-order logic with weight aggregation 63

between two users. For σ = {E}, let A be the (σ, W)-structure that
enriches the network of friends from Example 3.1 as shown in
Figure 5.1.

(b) In a recent survey [81], Pan and Ding describe different approaches
to represent social-media users via embeddings into a low-dimen-
sional vector space, where the embeddings are based on the users’
social-media posts2. We represent the available data by a weighted
structure A as follows. Consider the group (Rk,+), where Rk is
the set of k-dimensional real vectors and + is the usual vector
addition; let W contain a unary weight symbol embedding of type
(Rk,+). Let σ = {F} and let A be a (σ, W)-structure such that the
universe U(A) consists of the users of a social network. Let F(A)
contain all pairs of users (v,w) such that v is a follower of w. For
every user v ∈ U(A), let embeddingA(v) be a k-dimensional vector
representing v’s social-media posts.

(c) Consider an online marketplace that allows retailers to sell their
products to consumers. The database of the marketplace contains
a table with transactions, and each entry consists of an identifier, a
customer, a product, a retailer, the price per item, and the number
of items sold. We can describe the database of the marketplace
as a weighted structure as follows. Let (Q,+, ·) be the field of
rationals, let W contain two unary weight symbols price and
quantity of type (Q,+, ·), let σ = {T }, and let A be a (σ, W)-
structure such that the universe U(A) contains the identifiers for
the transactions, customers, products, and retailers. For every
transaction, let T(A) contain the 4-tuple (i, c,p, r) consisting of
the identifier for the transaction, the customer, the product, and
the retailer. For every transaction identifier i let priceA(i) be
the price per item in the transaction and let quantityA(i) be the
number of items sold; for every other identifier v in U(A), let
priceA(v) = quantityA(v) = 0.

(d) Consider vertex-coloured edge-weighted graphs, where R,G,B
are unary relations of red, green, and blue vertices, E is a binary
relation of edges, and where every edge (v,w) has an associated
weight that is a k-dimensional vector of reals (for some fixed
number k). Such graphs can be viewed as (σ, W)-structures A,
where σ = {E,R,G,B}, W contains a binary weight symbol w of
type (Rk,+) and wA(v,w) ∈ Rk for all edges (v,w) ∈ E(A).

Based on these weighted structures, we can now introduce first-
order logic with weight aggregation (FOWA). Let σ be a signature, S a
collection of rings and/or abelian groups, and W a finite set of weight
symbols. Fix a countably infinite set vars of variables. Analogously

2 Among other applications, such embeddings might be used to predict a user’s
personality or political leaning.

64 weighted structures and logics with weight aggregation

to σ-interpretations as defined in Section 2.3, a (σ, W)-interpretation
I = (A,β) consists of a (σ, W)-structure A and an assignment β : vars→
U(A).

An S-predicate collection is a 4-tuple (P, ar, type, J·K) where P is a
countable set of predicate names and, to each P ∈ P, ar assigns an
arity ar(P) ∈N⩾1, type assigns a type type(P) ∈ Sar(P), and J·K assigns
a semantics JPK ⊆ type(P). For the remainder of this section, fix an
S-predicate collection (P, ar, type, J·K).

For every S ∈ S that is not a ring but just an abelian group, a W-
product of type S is either an element s ∈ S or an expression of the form
w(x1, . . . , xk) where w ∈W is of type S, k = ar(w), and x1, . . . , xk are k
pairwise distinct variables in vars. For every ring S ∈ S, a W-product of
type S is an expression of the form t1 · · · · · tℓ where ℓ ∈ N⩾1 and for
each i ∈ [ℓ] either ti ∈ S or there exists a w ∈W with type(w) = S and
there exist k := ar(w) pairwise distinct variables x1, . . . , xk in vars such
that ti = w(x1, . . . , xk). By vars(p) we denote the set of all variables
that occur in a W-product p.

Example 5.2. Recall Example 5.1(a)–(d), and let x and y be vari-
ables. Examples of W-products are age(x) · length(x,y), embedding(x),
price(x)·quantity(x), and w(x,y). Below, in Definition 5.3, we will
provide the formal definition of a logic (including notions of formulas
and so-called S-terms) which is capable of expressing the following
statements.

(a) For each user x, the sum of the ages of the friends, multiplied by
the length of the friendship, can be expressed as the S-term

tagg(x) :=
∑

age(y) · length(x ′,y) . x ′=x∧ E(x ′,y).

(b) For vectors u, v ∈ Rk, let d(u, v) denote the Euclidean distance
between u and v. We might want to use a formula φsimilar(x,y)
expressing that the two k-dimensional vectors associated with
persons x and y have Euclidean distance at most 1. To express
this in our logic, we can add the rational field (Q,+, ·) to the
collection S and use a predicate name PED of arity 3 and type
(Rk,+)× (Rk,+)× (Q,+, ·) with JPEDK = {(u, v,q) ∈ Rk ×Rk ×
Q | d(u, v) ⩽ q}. Then,

φsimilar(x,y) := PED(embedding(x), embedding(y), 1)

is a formula with the desired meaning.

(c) Given a first-order formula φgroup(p) that defines products of a
certain product group based on the structure of their transactions,
we can describe the amount of money a customer c paid on the
specified product group via the S-term

tspending(c) :=
∑

price(i) · quantity(i) . ∃p∃r
(
φgroup(p)

∧ T(i, c,p, r)
)
.

5.1 first-order logic with weight aggregation 65

This term associates with every customer c the sum of the product
of price(i) and quantity(i) for all transaction identifiers i for
which there exists a product p and a retailer r such that the
tuple (i, c,p, r) belongs to the transaction table and the product p
belongs to the specified product group. The S-term

tsales :=
∑

price(i) · quantity(i) . ∃c∃p∃r
(
φgroup(p)

∧ T(i, c,p, r)
)

specifies the amount all customers have paid on products from the
product group.

We might want to select the “heavy hitters”, i. e. all customers
c for whom tspending(c) > 0.01 · tsales holds. In our logic, this is
expressed by the formula

P>(tspending(c), 0.01 · tsales),

where P> is a predicate name of type (Q,+, ·) × (Q,+, ·) with
JP>K = {(r, s) ∈ Q2 | r > s}.

(d) For each vertex x, the sum of the edge weights between x and its
blue neighbours is specified by the S-term

tB(x) :=
∑

w(x ′,y).(x ′=x∧ E(x ′,y)∧B(y)).

We have designed the definition of the syntax of our logic in a way
particularly suitable for formulating and proving the locality results
that are crucial for obtaining our learning results. To obtain a more
user-friendly syntax, i. e. which allows reading and constructing for-
mulas in a more intuitive way, one could of course introduce syntactic
sugar that allows explicitly writing statements of the form

•
∑
y age(y) · length(x,y) . E(x,y) instead of∑
age(y) · length(x ′,y) . x ′=x∧ E(x ′,y),

• d(embedding(x), embedding(y)) ⩽ 1 instead of
PED(embedding(x), embedding(y), 1), and

• tspending(c) > 0.01 · tsales instead of P>(tspending(c), 0.01 · tsales).

We now define the precise syntax and semantics of our weight-
aggregation logic. FOWA

Definition 5.3 (FOWA(P)[σ, S, W]). For FOWA(P)[σ, S, W], the set of
formulas and S-terms is built according to the following rules.

(1) x1=x2 and R(x1, . . . , xk) are formulas for x1, x2, . . . , xk ∈ vars and
R ∈ σ with ar(R) = k.

(2) If w ∈ W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a
tuple of k pairwise distinct variables, then

(
s = w(x̄)

)
is a formula.

66 weighted structures and logics with weight aggregation

(3) If φ and ψ are formulas, then ¬φ and (φ∨ψ) are also formulas.

(4) If φ is a formula and x ∈ vars, then ∃xφ is a formula.

(5) If φ is a formula, w ∈ W, S = type(w), s ∈ S, k = ar(w), and
x̄ = (x1, . . . , xk) is a tuple of k pairwise distinct variables, then(
s =

∑
w(x̄).φ

)
is a formula.

(6) If P ∈ P, m = ar(P), and t1, . . . , tm are S-terms with type(P) =(
type(t1), . . . , type(tm)

)
, then P(t1, . . . , tm) is a formula.

(7) For every S ∈ S and every s ∈ S, s is an S-term of type S.

(8) For every S ∈ S, every w ∈W of type S, and every tuple (x1, . . . , xk)
of k := ar(w) pairwise distinct variables in vars, w(x1, . . . , xk) is an
S-term of type S.

(9) If t1 and t2 are S-terms of the same type S, then (t1 + t2) and
(t1− t2) are also S-terms of type S; furthermore, if S is a ring (and
not just an abelian group), then also (t1·t2) is an S-term of type S.

(10) If φ is a formula, S ∈ S, and p is a W-product of type S, then∑
p.φ is an S-term of type S.

Let I = (A,β) be a (σ, W)-interpretation. For a formula or S-term ξ

from FOWA(P)[σ, S, W], the semantics JξKI is defined as follows.

(1) Jx1=x2K
I = 1 if β(x1) = β(x2), and Jx1=x2K

I = 0 otherwise;
JR(x1, . . . , xk)K

I = 1 if
(
β(x1), . . . ,β(xk)

)
∈ R(A), and

JR(x1, . . . , xk)K
I = 0 otherwise.

(2)
q(
s = w(x̄)

)yI
= 1 if s = wA

(
β(x1), . . . ,β(xk)

)
, and

q(
s = w(x̄)

)yI
= 0 otherwise.

(3) J¬φKI = 1− JφKI and J(φ∨ψ)K = max
{
JφKI , JψKI

}
.

(4) J∃xφKI = max
{
JφKI

v
x
∣∣ v ∈ U(A)}.

(5)
q(
s =

∑
w(x̄).φ

)yI
= 1 if s =

∑
S

{
wA(v̄)

∣∣ v̄ = (v1, . . . , vk) ∈(
U(A)

)k with JφKI
v1 ,...,vk
x1 ,...,xk = 1

}
, and

q(
s =

∑
w(x̄).φ

)yI
= 0 other-

wise. As usual, by convention, we let
∑
S X = 0S if X = ∅.

(6) JP(t1, . . . , tm)KI = 1 if
(
Jt1K

I , . . . , JtmKI
)
∈ JPK,

and JP(t1, . . . , tm)KI = 0 otherwise.

(7) JsKI = s for s ∈ S for some S ∈ S.

(8) Jw(x1, . . . , xk)K
I = wA

(
β(x1), . . . ,β(xk)

)
.

(9) J(t1 ∗ t2)KI = Jt1K
I ∗S Jt2K

I, for ∗ ∈ {+,−, ·}.

5.1 first-order logic with weight aggregation 67

(10) J
∑
p.φKI =

∑
S

{
JpKI

v1 ,...,vk
x1 ,...,xk

∣∣ v1, . . . , vk ∈ U(A), JφKI
v1 ,...,vk
x1 ,...,xk = 1

}
,

where vars(p) = {x1, . . . , xk} and JpKI = Jt1K
I ·S · · · ·S JtℓK

I if p =

t1· · · · ·tℓ is of type S.

An expression is a formula or an S-term. The set vars(ξ) of an ex-
pression ξ is defined as the set of all variables in vars that occur in ξ.
The free variables free(ξ) of ξ are inductively defined as follows.

(1) free(x1=x2) = {x1, x2} and free
(
R(x1, . . . , xk)

)
= {x1, . . . , xk}.

(2) free
((
s = w(x1, . . . , xk)

))
= {x1, . . . , xk}.

(3) free(¬φ) = free(φ) and free(φ∨ψ) = free(φ)∪ free(ψ).

(4) free(∃xφ) = free(φ) \ {x}.

(5) free
((
s =

∑
w(x1, . . . , xk).φ

))
= free(φ) \ {x1, . . . , xk},

(6) free
(
P(t1, . . . , tm)

)
=

⋃m
i=1 free(ti).

(7) free(s) = ∅ for s ∈ S for some S ∈ S.

(8) free
(
w(x1, . . . , xk)

)
= {x1, . . . , xk}.

(9) free
(
(t1 ∗ t2)

)
= free(t1)∪ free(t2) for ∗ ∈ {+,−, ·}.

(10) free(
∑
p.φ) = free(φ) \ vars(p).

As for the logics introduced in Section 2.3, we write ξ(x1, . . . , xk)
to indicate that free(ξ) ⊆ {x1, . . . , xk}. A sentence is a formula without
free variables and a ground S-term is an S-term without free variables.

For a formula φ and a (σ, W)-interpretation I, we write I |= φ to
indicate that JφKI = 1. Likewise, I ̸|= φ indicates that JφKI = 0. For
a formula φ, a (σ, W)-structure A, and a tuple v̄ = (v1, . . . , vk) ∈(
U(A)

)k, we write A |= φ[v̄] or (A, v̄) |= φ to indicate that (A,β) |= φ
for all assignments β with β(xi) = vi for all i ∈ [k]. Furthermore, we
set Jφ(v̄)KA := 1 if A |= φ[v̄], and Jφ(v̄)KA := 0 otherwise. Similarly, for
an S-term t(x̄), we write tA[v̄] to denote JtKI.

Next, we introduce the fragments that we will use in Chapter 6 for
our learning problems on weighted structures. FOWA1, FOW1

Definition 5.4 (FOWA1(P)[σ, S, W] and FOW1(P)[σ, S, W]). The set of
formulas and S-terms of the logic FOWA1(P)[σ, S, W] is built according
to the same rules as for the logic FOWA(P)[σ, S, W], with the following
restrictions:

(5)1 rule (5) can only be applied if S is finite,

(6)1 rule (6) can only be applied if |free(t1)∪ · · · ∪ free(tm)| ⩽ 1.

The logic FOW1(P)[σ, S, W] is the restriction of FOWA1(P)[σ, S, W]

where rule (10) cannot be applied.

68 weighted structures and logics with weight aggregation

Note that FO is the restriction of FOW1 where only rules (1), (3),
and (4) can be applied. As usual, we write (φ∧ψ) and ∀xφ as short-
hands for ¬(¬φ∨ ¬ψ) and ¬∃x¬φ. The quantifier rank qr(ξ) of an
FOWA(P)[σ, S, W]-expression ξ is defined as the maximum nesting
depth of constructs using rules (4) and (5) in order to construct ξ. The
aggregation depth dag(ξ) of ξ is defined as the maximum nesting depth
of term constructions using rule (10) in order to construct ξ.

Remark 5.5. FOW1 can be viewed as an extension of first-order logic
with modulo-counting quantifiers. Let S contain the abelian group
(Z/mZ,+) for some m ⩾ 2, and let W contain a unary weight symbol
onem of type Z/mZ such that oneAm(v) = 1 for all v ∈ U(A). Then the
modulo-m-counting quantifier ∃i mod mxφ, stating that the number of
interpretations for x that satisfy φ is congruent to i modulo m, can be
expressed in FOW1(P)[σ, S, W] via

(
i =

∑
onem(x).φ

)
.

FOWA1 can be viewed as an extension of the logic FOC1 that we
described in Section 2.3. Let S contain the integer ring (Z,+, ·) and let
W contain a unary weight symbol one of type Z such that oneA(v) = 1
for all v ∈ U(A). Then the counting term #(x1, . . . , xk).φ of FOC1,
which counts the number of interpretations for (x1, . . . , xk) that satisfy
φ, can be expressed in FOWA1(P)[σ, S, W] via the S-term

∑
p.φ for

p := one(x1)· · · · ·one(xk).
Let us mention, again, that we have designed the precise definition

of the syntax of our logic in a way particularly suitable for formu-
lating and proving the locality results that are crucial for obtaining
our learning results. To obtain a more user-friendly syntax, i. e. which
allows reading and constructing formulas in a more intuitive way,
it would of course make sense to introduce syntactic sugar that al-
lows explicitly writing statements of the form #(x1, . . . , xk).φ instead
of

∑
p.φ for p := one(x1)· · · · ·one(xk) and

(
#(x).φ ≡ i mod m

)
or

∃i mod mxφ instead of
(
i =

∑
onem(x).φ

)
. For this, one would ta-

citly assume that S contains (Z,+, ·) and (Z/mZ,+), and W contains
the unary weight symbols one of type Z and onem of type Z/mZ,
where oneA(v) = oneAm = 1 for every v ∈ U(A) and every considered
(σ, W)-structure A.

To close this section, we return to the running examples from Ex-
amples 5.1 and 5.2.

Example 5.6. We use the syntactic sugar introduced at the end of
Remark 5.5.

(a) Let P⩾ be a binary predicate in P of type Q×Q that is interpreted
by the ⩾-relation. The term

t#over40(x) := #(y).
(
E(x,y)∧ P⩾

(
age(y), 40

))
specifies the number of friends of x that are at least 40 years old.
Then, the FOWA1(P)[σ, S, W]-formula

φ(x) := P⩾
(
2 · t#over40(x) , #(y).E(x,y)

)

5.1 first-order logic with weight aggregation 69

specifies those users for whom at least half of their friends are at
least 40 years old.

(b) The term t#follows(x) := #(y).F(x,y) specifies the number of users y
followed by person x. The term tsum(x) :=

∑
embedding(y).F(x,y)

specifies the sum of the vectors associated with all users y followed
by x. To describe the users x whose embedding is δ-close (for some
fixed δ > 0) to the average of the embeddings of users they follow3,
we might want to use a formula φclose(x) of the form

d

(
embedding(x) ,

1

t#follows(x)
· tsum(x)

)
< δ.

We can describe this in FOWA1(P)[σ, S, W] by the formula

φclose(x) := Pdist<δ
(
embedding(x), t#follows(x), tsum(x)

)
,

where Pdist<δ is a ternary predicate in P of type Rk ×Z×Rk

consisting of all triples (v̄, ℓ, w̄) with ℓ > 0 and d(v̄, 1ℓ ·w̄) < δ.

(c) The number of consumers who bought products p from the
product group defined by φgroup(p) is specified by the S-term

t#cons :=
∑

one(c) . ∃i∃p ∃r
(
φgroup(p)∧ T(i, c,p, r)).

Using the syntactic sugar described above, this S-term can be ex-
pressed via #(c). ∃i∃p ∃r

(
φgroup(p)∧ T(i, c,p, r)

)
. The consumers

c who spent at least as much as the average consumer on the
products p satisfying φgroup(p) can be described by the formula

φspending(c) := P⩾

((
tspending(c) · t#cons

)
, tsales

)
,

where P⩾ is the binary predicate from (a). To improve readability,
one could introduce syntactic sugar that allows expressing this as
tspending(c) ⩾ tsales/t#cons. The formula φspending(c) belongs to the
fragment FOWA1(P)[σ, S, W].

(d) Recall the term tB(x) introduced in Example 5.2 (d) that specifies
the sum of the weights of edges between x and its blue neigh-
bours. Let tR(x) be a similar term summing up the weights of
edges between x and its red neighbours. Using the syntactic
sugar introduced at the end of Example 5.2, this can be de-
scribed as

∑
y w(x,y).

(
E(x,y) ∧ R(y)

)
. To specify the vertices x

that have exactly 5 red neighbours, we can use the formula
φ

5 red(x) :=
(
5 = #(y).

(
E(x,y)∧ R(y)

))
. Let us now assume we

are given a particular set H ⊆ R2k and we want to specify the
vertices x that have exactly 5 red neighbours and for which, in

3 Depending on the target of the embeddings, this could mean that the user mostly
follows users with a very similar personality or political leaning.

70 weighted structures and logics with weight aggregation

addition, the 2k-ary vector obtained by concatenating the k-ary
vectors computed by summing up the weights of edges between
x and its blue neighbours and by summing up the weights of
edges between x and its red neighbours belongs to H. To ex-
press this, we can use a binary predicate P of type Rk ×Rk with
JPK =

{
(ū, v̄) ∈ Rk ×Rk

∣∣ (u1, . . . ,uk, v1, . . . , vk) ∈ H
}

. Then,
the FOWA1(P)[σ, S, W]-formula ψ(x) := φ

5 red(x)∧P
(
tB(x), tG(x)

)
specifies the vertices x we are interested in.

In the following sections, we provide locality properties of FOW1

and FOWA1 that are similar to well-known locality properties of FO
and to locality properties of FOC1 achieved in [56]. This includes
Feferman-Vaught decompositions and a Gaifman normal form for FOW1 in
Sections 5.2 and 5.3, and a localisation theorem for the more expressive
logic FOWA1 in Section 5.4.

For the remainder of this chapter, let us fix a signature σ, a collection
S of rings and/or abelian groups, a finite set W of weight symbols,
and an S-predicate collection (P, ar, type, J·K).

The notion of local formulas for FOWA is defined analogously to
local FOCN-formulas in Section 2.4. Let r ∈ N. A FOWA(P)[σ, S, W]-
formula φ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local (around x̄)
if for every (σ, W)-structure A and all v̄ ∈

(
U(A)

)k, we have A |=

φ[v̄] ⇐⇒ NA
r (v̄) |= φ[v̄]. A formula is local if it is r-local for some

r ∈N.Localisation

The r-localisation φ(r) of an FOWA(P)[σ, S, W]-formula φ(x̄) is the
formula obtained from φ by replacing every subformula of the form
∃yφ ′ with the formula ∃y

(
φ ′ ∧ dist(x̄;y) ⩽ r

)
, replacing every sub-

formula
(
s =

∑
w(ȳ).φ ′), for ȳ = (y1, . . . ,yk), with the formula(

s =
∑

w(ȳ).(φ ′ ∧
∧k
j=1 dist(x̄;yj) ⩽ r)

)
, and replacing every S-term

of the form
∑
p.φ ′ with the S-term

∑
p.
(
φ ′ ∧

∧k
j=1 dist(x̄;yj) ⩽ r

)
,

where {y1, . . . ,yk} = vars(p). The resulting formula φ(r)(x̄) is r-local.

5.2 feferman-vaught decompositions for fow1

We start this section with an introduction of Feferman-Vaught decom-
positions. Let X, Y ̸∈ σ be the two unary relation symbols used in the
disjoint-sum construction in Chapter 2.Feferman-Vaught

decomposition
Definition 5.7. Let L be a subset of FOWA(P)[σ, S, W]. Let k, ℓ ∈N and
let x̄ = (x1, . . . , xk), ȳ = (y1, . . . ,yℓ) be tuples of k+ ℓ pairwise distinct
variables. Let φ be an FOWA(P)[σ ′, S, W]-formula with σ ′ := σ∪ {X, Y}
and free(φ) ⊆ {x1, . . . , xk,y1, . . . ,yℓ}. A Feferman-Vaught decomposition
of φ in L w.r.t. (x̄; ȳ) is a finite, non-empty set ∆ of tuples of the
form (α,β) where α,β ∈ L, free(α) ⊆ {x1, . . . , xk}, and free(β) ⊆
{y1, . . . ,yℓ}, such that the following is true for all (σ, W)-structures
A,B with U(A) ∩ U(B) = ∅ and all v̄ ∈

(
U(A)

)k, w̄ ∈
(
U(B)

)ℓ:

5.2 feferman-vaught decompositions for fow1 71

A ⊕B |= φ[v̄, w̄] if and only if there exists (α,β) ∈ ∆ such that
A |= α[v̄] and B |= β[w̄].

In our first result of this section, we provide Feferman-Vaught
decompositions for FOW1.

Theorem 5.8 (Feferman-Vaught decompositions for FOW1).
Let k, ℓ ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . ,yℓ) be tuples of
k+ ℓ pairwise distinct variables. For every FOW1(P)[σ ′, S, W]-formula φ
with free(φ) ⊆ {x1, . . . , xk,y1, . . . ,yℓ}, there exists a Feferman-Vaught
decomposition ∆ in L of φ w.r.t. (x̄; ȳ), where L := Lφ is the class of all
FOW1(P)[σ, S, W]-formulas of quantifier rank at most qr(φ) which use only
those P ∈ P and S ∈ S that occur in φ and only those S-terms that occur
in φ or that are of the form s for an s ∈ S with S ∈ S where S is finite and
occurs in φ.

Furthermore, there is an algorithm that computes ∆ upon input of φ, x̄, ȳ.

The proof proceeds similarly to the proof of the Feferman-Vaught
decomposition for first-order logic with modulo-counting quantifiers
in [70]. Before presenting the proof, let us formulate a straightforward
corollary of Theorem 5.8.

Corollary 5.9. Let k, ℓ ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . ,yℓ)
be tuples of k+ ℓ pairwise distinct variables. Upon input of an r ∈ N and
an r-local FOW1(P)[σ, S, W]-formula φ(x̄, ȳ), one can compute a finite,
non-empty set ∆ of pairs

(
α(x̄),β(ȳ)

)
of L-formulas, where L is the class of

all r-localisations of formulas in the class Lφ of Theorem 5.8, such that the
following two formulas are equivalent:

• dist(x̄; ȳ) > 2r+1 ∧ φ(x̄, ȳ)

• dist(x̄; ȳ) > 2r+1 ∧
∨

(α,β)∈∆
(
α(x̄)∧β(ȳ)

)
The remainder of this section is devoted to the proofs of Theorem 5.8

and Corollary 5.9. In the proof of Theorem 5.8, we will use the follow-
ing result that allows us to turn a Feferman-Vaught decomposition
into one where the αs are mutually exclusive.

Lemma 5.10. Let L be a subset of FOWA(P)[σ, S, W]. Let k, ℓ ∈ N and
let x̄ = (x1, . . . , xk), ȳ = (y1, . . . ,yℓ) be tuples of k+ ℓ pairwise distinct
variables. Let ∆ be a finite, non-empty set of tuples of the form (α,β) where
α,β ∈ L, free(α) ⊆ {x1, . . . , xk}, and free(β) ⊆ {y1, . . . ,yℓ}.

Then there exists a finite, non-empty set ∆̂ of tuples of the form (α̂, β̂),
where α̂, β̂ ∈ L, free(α̂) ⊆ {x1, . . . , xk}, and free(β̂) ⊆ {y1, . . . ,yℓ}, with
the following two properties.

1. The α̂s are mutually exclusive, i. e., for every two distinct (α̂1, β̂1) and
(α̂2, β̂2) in ∆̂, the formula (α̂1 ∧ α̂2) is unsatisfiable.

72 weighted structures and logics with weight aggregation

2. The sets ∆ and ∆̂ are equivalent, i. e., for all (σ, W)-structures A,B
with U(A) ∩U(B) = ∅ and all v̄ ∈

(
U(A)

)k, w̄ ∈
(
U(B)

)ℓ, there
exists (α,β) ∈ ∆ such that A |= α[v̄] and B |= β[w̄] if and only if
there exists (α̂, β̂) ∈ ∆̂ such that A |= α̂[v̄] and B |= β̂[w̄].

Furthermore, there is an algorithm that computes ∆̂ upon input of ∆.

Proof. Let A :=
{
α

∣∣ there exists β such that (α,β) ∈ ∆
}

and, for
every α ∈ A, let B(α) :=

{
β

∣∣ (α,β) ∈ ∆
}

. For every I ⊆ A, let
αI :=

∧
α∈I α ∧

∧
α∈A\I ¬α and βI :=

∨
α∈I

∨
β∈B(α) β. We set

∆̂ :=
{
(αI,βI)

∣∣ ∅ ≠ I ⊆ A}.

It is straightforward to verify that ∆̂ meets all requirements from
Lemma 5.10.

With this result at hand, we can now prove Theorem 5.8.

Proof of Theorem 5.8. We proceed by induction on the construction of
φ, and we use an arbitrary unsatisfiable formula ⊥ (e. g., ⊥ := ∃z¬z=z)
and an arbitrary tautology ⊤ (e. g., ⊤ := ¬⊥).

For the induction base, we consider formulas built according to
the rules (1), (2), and (6)1 of Definitions 5.3 and 5.4. Rule (1) can be
handled in exactly the same way as in the traditional Feferman-Vaught
construction for first-order logic (cf., e. g., [37, 49, 74]). That is, for an
atomic formula φ, we proceed as follows.

• If φ = X(xi) for some i ∈ [k] or φ = Y(yj) for some j ∈ [ℓ], then
∆ :=

{
(⊤,⊤)

}
.

• If φ = X(yj) for some j ∈ [ℓ], φ = Y(xi) for some i ∈ [k], or
free(φ) contains variables from both {x1, . . . , xk} and {y1, . . . ,yℓ},
then ∆ :=

{
(⊥,⊥)

}
.

• If free(φ) ⊆ {x1, . . . , xk} and X and Y do not occur in φ, then
∆ :=

{
(φ,⊤)

}
.

• If free(φ) ⊆ {y1, . . . ,yℓ} and X and Y do not occur in φ, then
∆ :=

{
(⊤,φ)

}
.

For rule (2), let φ be of the form
(
s = w(z1, . . . , zm)

)
. If {z1, . . . , zm} ⊆

{x1, . . . , xk}, we can choose ∆ :=
{
(φ,⊤)

}
. If {z1, . . . , zm} ⊆ {y1, . . . ,yℓ},

we can choose ∆ :=
{
(⊤,φ)

}
. Otherwise, we know that {z1, . . . , zm}

contains variables from x̄ and variables from ȳ. If s = 0S, we can
choose ∆ :=

{
(⊤,⊤))

}
, and otherwise, we can choose ∆ :=

{
(⊥,⊥)

}
. It

is straightforward to verify that ∆ is a Feferman-Vaught decomposition
in FOW1(P)[σ, S, W] of φ w.r.t. (x̄; ȳ). For rule (6)1, let φ be of the form
P(t1, . . . , tm), where P ∈ P and t1, . . . , tm are S-terms. We know that
each ti is built using the rules (7)–(9), and that there is one variable
z such that vars(ti) ⊆ {z} for all i ∈ [m]. Thus, if z ∈ {x1, . . . , xk},

5.2 feferman-vaught decompositions for fow1 73

we can choose ∆ :=
{
(φ,⊤)

}
; and if z ∈ {y1, . . . ,yℓ}, we can choose

∆ :=
{
(⊤,φ)

}
.

For the induction step, we consider formulas built according to
the rules (3), (4), and (5)1 of Definitions 5.3 and 5.4. Rules (3) and (4)
can be handled in exactly the same way as for first-order logic (cf.,
e. g., [37, 49, 74]). If φ is of the form φ1 ∨φ2, then, by the induction
hypothesis, there are Feferman-Vaught decompositions ∆1 and ∆2
in L of φ1 and φ2 w.r.t. (x̄; ȳ), so we can choose ∆ := ∆1 ∪∆2. If φ
is of the form ¬ψ and ∆ ′ =

{
(α1,β1), . . . , (αm,βm)

}
is a Feferman-

Vaught decomposition in L of ψ w.r.t. (x̄; ȳ), then we can set ∆ :={
(αI,βI)

∣∣ I ⊆ [m]
}

with αI :=
∧
i∈I ¬αi and βI :=

∧
i∈[m]\I ¬βi. If φ

is of the form ∃zψ, then, by the induction hypothesis, we can compute
Feferman-Vaught decompositions ∆1 and ∆2 in L of ψw.r.t. (x̄z; ȳ) and
(x̄; ȳz), so we can choose ∆ :=

{
(∃zα,β)

∣∣ (α,β) ∈ ∆1
}
∪
{
(α,∃zβ)

∣∣
(α,β) ∈ ∆2

}
. One can easily verify that ∆ is a Feferman-Vaught

decomposition in L of φ w.r.t. (x̄; ȳ) in all the above-mentioned cases.
For rule (5)1, we proceed similarly to the case of modulo-counting

quantifiers in [70]. Let φ be of the form
(
s =

∑
w(z̄).ψ

)
, for a tuple

of variables z̄ = (z1, . . . , zm) and a weight symbol w ∈W whose type
S := type(w) is finite. For every i ∈ S, let

χi :=
(
i =

∑
w(z̄).

(
ψ∧

m∧
j=1

X(zj)
))

and

γi :=
(
i =

∑
w(z̄).

(
ψ∧

m∧
j=1

Y(zj)
))

.

Let I :=
{
(i1, i2) ∈ S× S

∣∣ i1 +S i2 = s
}

. It is straightforward to see
that for all (σ, W)-structures A and B with U(A) ∩ U(B) = ∅ and
all v̄ ∈

(
U(A)

)k and w̄ ∈
(
U(B)

)ℓ, we have (A ⊕B, v̄w̄) |=
(
s =∑

w(z̄).ψ
)

if and only if (A⊕B, v̄w̄) |=
∨

(i,j)∈I(χi ∧ γj). Since (χi ∧

γj) is equivalent to ¬(¬χi∨¬γj), and we already know how to handle
formulas built using rule (3), it remains to show the following.

Claim. For every i ∈ S, one can compute Feferman-Vaught decomposi-
tions ∆χi and ∆γi in FOW1(P)[σ, S, W] of χi and γi w.r.t. (x̄; ȳ).

Proof. Let i ∈ S. We show how to construct ∆γi ; the construction
of ∆χi is analogous. By the induction hypothesis, we can construct
a Feferman-Vaught decomposition in FOW1(P)[σ, S, W] of ψ w.r.t.
(x̄; ȳz̄). Using Lemma 5.10, we can turn this decomposition into a
Feferman-Vaught decomposition ∆ψ where the αs are mutually ex-
clusive, i. e., for every two distinct (α,β), (α ′,β ′) ∈ ∆ψ, the formula
(α∧α ′) is unsatisfiable.

Let ∆ ′
γi

:=
{(
α, (i =

∑
w(z̄).β)

∣∣ (α,β) ∈ ∆ψ
}

. If i ̸= 0S, then we let
∆γi := ∆

′
γi

. Otherwise, if i = 0S, we let ∆γi := ∆
′
γi
∪
{(∧

α∈A ¬α,⊤
)}

,
where A :=

{
α
∣∣ there exists β such that (α,β) ∈ ∆ψ

}
.

74 weighted structures and logics with weight aggregation

It remains to verify that ∆γi is a Feferman-Vaught decomposition of
γi. Consider arbitrary (σ, W)-structures A and B with U(A)∩U(B) =

∅, and let ū ∈
(
U(A)

)k and v̄ ∈
(
U(B)

)ℓ. By definition, we have
A⊕B |= γi[ū, v̄] if and only if i =

∑
S{w

B(w̄) | w̄ ∈ M} for M :={
w̄ ∈

(
U(B)

)m ∣∣ A⊕B |= ψ[ū, v̄, w̄]
}

. Since ∆ψ is a Feferman-Vaught
decomposition of ψ w.r.t. (x̄; ȳz̄), we have A⊕B |= ψ[ū, v̄, w̄] if and
only if there exists (α,β) ∈ ∆ψ such that A |= α[ū] and B |= β[v̄, w̄].
Furthermore, we know that the αs in ∆ψ are mutually exclusive. Thus,
there either is exactly one α ∈ A such that A |= α[ū] (we call this
Case 1), or for all α ∈ A, we have A ̸|= α[ū] (we call this Case 2).

In Case 1, by our definition of the notion “the αs are mutually
exclusive”, there is exactly one formula β such that (α,β) ∈ ∆ψ. Hence,
M =

{
w̄ ∈

(
U(B)

)m ∣∣ B |= β[v̄, w̄]
}

. Thus, we have A⊕B |= γi[ū, v̄]
⇐⇒ i =

∑
S{w

B(w̄) | w̄ ∈ M} ⇐⇒ B |=
(
i =

∑
w(z̄).β

)
[v̄] ⇐⇒

there are (α ′,β ′) ∈ ∆γi such that A |= α ′[ū] and B |= β ′[v̄].
In Case 2, we have

M =
{
w̄ ∈

(
U(B)

)m ∣∣ A⊕B |= ψ[ū, v̄, w̄]
}

=
{
w̄ ∈

(
U(B)

)m ∣∣ there exists (α ′,β ′) ∈ ∆ψ
such that A |= α ′[ū] and B |= β ′[v̄]

}
= ∅.

Hence, A⊕B |= γi[ū, v̄] ⇐⇒ i = 0 ⇐⇒ ∆γi contains the tuple(∧
α∈A ¬α,⊤

)
⇐⇒ there are (α ′,β ′) ∈ ∆γi such that A |= α ′[ū] and

B |= β ′[v̄].
All in all, we obtain that ∆γi is a Feferman-Vaught decomposition

in FOW1(P)[σ, S, W] of γi w.r.t. (x̄; ȳ). ⌟

This completes the induction step and thus also the proof of The-
orem 5.8.

We conclude this section with the proof of Corollary 5.9.

Proof of Corollary 5.9. Let φ be an r-local FOW1(P)[σ, S, W]-formula.
Using Theorem 5.8, we can compute a Feferman-Vaught decompos-
ition ∆ ′ in Lφ of φ w.r.t. (x̄; ȳ). Let ∆ :=

{
(α(r),β(r))

∣∣ (α,β) ∈ ∆ ′},
where α(r) and β(r) are the r-localisations of α and β. We show that
the two formulas

ψ1(x̄, ȳ) := dist(x̄; ȳ) > 2r+1 ∧ φ(x̄, ȳ)

and

ψ2(x̄, ȳ) := dist(x̄; ȳ) > 2r+1 ∧
∨

(α(r),β(r))∈∆

(
α(r)(x̄)∧β(r)(ȳ)

)
given in Corollary 5.9 are equivalent.

Let A be a (σ, W)-structure, v̄ ∈
(
U(A)

)k, and w̄ ∈
(
U(A)

)ℓ. If
dist(v̄, w̄) ⩽ 2r+1, then A ̸|= ψ1[v̄, w̄] and A ̸|= ψ2[v̄, w̄]. Now let

5.3 gaifman normal form for fow1 75

dist(v̄, w̄) > 2r+1. Then, since φ is r-local, we have that A |= ψ1[v̄, w̄]
if and only if NA

r (v̄)⊎NA
r (w̄) |= φ[v̄, w̄]. Thus, we obtain

A |= ψ1[v̄, w̄]

⇐⇒ NA
r (v̄)⊎NA

r (w̄) |= φ[v̄, w̄]

⇐⇒ NA
r (v̄)⊕NA

r (w̄) |= φ[v̄, w̄]

⇐⇒ ∃(α,β) ∈ ∆ ′ : NA
r (v̄) |= α[v̄]∧NA

r (w̄) |= β[w̄]

⇐⇒ ∃(α,β) ∈ ∆ ′ : NA
r (v̄) |= α

(r)[v̄]∧NA
r (w̄) |= β

(r)[w̄]

⇐⇒ ∃(α,β) ∈ ∆ ′ : NA
r (v̄)⊕NA

r (w̄) |= α
(r)[v̄]∧β(r)[w̄]

⇐⇒ ∃(α,β) ∈ ∆ ′ : NA
r (v̄)⊎NA

r (w̄) |= α
(r)[v̄]∧β(r)[w̄]

⇐⇒ ∃(α,β) ∈ ∆ ′ : A |= α(r)[v̄]∧β(r)[w̄]

⇐⇒ A |= ψ2[v̄, w̄].

We can switch between the disjoint sum and the disjoint union of
structures because the considered formulas only use relations from
the disjoint union. All in all, this shows that ψ1 ≡ ψ2.

5.3 gaifman normal form for fow1

We now turn to a notion of Gaifman normal form for FOW1. For r ∈N, Basic local sentence

a basic local sentence (of radius r) in FOW1(P)[σ, S, W]] is a sentence of
the form

∃x1 . . . ∃xk
(∧
1⩽i<j⩽k

distσ(xi, xj)>2r ∧

k∧
i=1

φ(xi)
)
,

where k ∈N⩾1, x1, . . . , xk are k pairwise distinct variables, and φ(x) is
an r-local FOW1(P)[σ, S, W]-formula. A local aggregation sentence (of ra- Local aggregation

sentencedius r) in FOW1(P)[σ, S, W] is a sentence of the form
(
s =

∑
w(x̄).φ(x̄)

)
,

where w ∈ W, s ∈ S with S := type(w), k = ar(w), x̄ = (x1, . . . , xk)
is a tuple of k pairwise distinct variables, and φ(x̄) is an r-local
FOW1(P)[σ, S, W]-formula. Gaifman normal

form
Definition 5.11. A FOW1(P)[σ, S, W]-formula is in Gaifman normal form
if it is a Boolean combination of local FOW1(P)[σ, S, W]-formulas, basic
local sentences in FOW1(P)[σ, S, W], and local aggregation sentences
in FOW1(P)[σ, S, W].

The locality radius of an FOW1(P)[σ, S, W]-formula φ in Gaifman
normal form is the least r such that all basic local sentences and all
local aggregation sentences in φ have radius at most r and every local
formula in φ is r ′-local for some r ′ ⩽ r.

In our next result, we provide a Gaifman normal form for FOW1.

Theorem 5.12 (Gaifman normal form for FOW1).
Every FOW1(P)[σ, S, W]-formula φ is equivalent to an FOW1(P)[σ, S, W]-
formula γ in Gaifman normal form with free(γ) = free(φ). Furthermore,
there is an algorithm that computes γ upon input of φ.

76 weighted structures and logics with weight aggregation

The proof proceeds similarly as Gaifman’s original proof for first-
order logic ([41], see also [49, Sect. 4.1]), but since subformulas are
from FOW1, we use Corollary 5.9 instead of Feferman-Vaught decom-
positions for FO (cf. [49, Lemma 2.3]). Furthermore, for formulas built
according to rule (5)1, we proceed similarly to the case of modulo-
counting quantifiers in the Gaifman normal construction of [70].

The remainder of this section is devoted to the proof of Theorem 5.12.

Proof of Theorem 5.12. The proof proceeds by induction on the construc-
tion of φ. Formulas built according to rules (1) and (2) of Definition 5.3
are 0-local. The statement of Theorem 5.12 trivially extends to Boolean
combinations of formulas, so formulas being built according to rule
(3). A formula φ that is built according to rule (6)1 is of the form
P(t1, . . . , tm), where P ∈ P and t1, . . . , tm are S-terms built using the
rules (7)–(9). Thus, φ is 0-local.

If φ is of the form ∃xψ, we can argue in the same way as in Gaif-
man’s original proof for first-order logic ([41], see also [49, Sect. 4.1]),
but since ψ is from FOW1(P)[σ, S, W], we use Corollary 5.9 instead of
Feferman-Vaught decompositions for first-order logic.

For formulas built according to rule (5)1 of Definition 5.4, we pro-
ceed similarly to the case of modulo-counting quantifiers in the
Gaifman normal construction of [70]. Let φ be of the form

(
s =∑

w(ȳ).ψ(x̄, ȳ)
)

for a tuple of variables ȳ = (y1, . . . ,yℓ), a weight sym-
bol w ∈W whose type S := type(w) is finite, and where x̄ = (x1, . . . , xk)
are the free variables of φ. Note that k might be 0.

By the induction hypothesis, we can transform ψ into an equival-
ent formula in Gaifman normal form. We can assume w.l.o.g. that
this formula is of the form

∨m
j=1

(
χj ∧ γj(x̄, ȳ)

)
, where each χj is an

FOW1(P)[σ, S, W]-sentence in Gaifman normal form and each γj(x̄, ȳ)
is r-local for some r ∈N. For every J ⊆ [m], let

χJ :=
∧
j∈J
χj ∧

∧
j∈[m]\J

¬χj and γJ(x̄, ȳ) :=
∨
j∈J
γj(x̄, ȳ).

Clearly,
∨m
j=1

(
χj ∧ γj(x̄, ȳ)

)
is equivalent to

∨
∅≠J⊆[m]

(
χJ ∧ γJ(x̄, ȳ)

)
,

the (χJ)J⊆[m] are mutually exclusive sentences in Gaifman normal
form, and γJ(x̄, ȳ) is r-local. Let

φ̃ :=
∨

∅≠J⊆[m]

(
χJ ∧

(
s =

∑
w(ȳ).γJ(x̄, ȳ)

))
.

Claim 1. If s ̸= 0S, then φ is equivalent to φ̃. Otherwise, if s = 0S, then
φ is equivalent to (φ̃∨ χ∅).

Proof. The formula φ is equivalent to

φ ′ :=
(
s =

∑
w(ȳ).

∨
∅≠J⊆[m]

(
χJ ∧ γJ(x̄, ȳ)

))
.

5.3 gaifman normal form for fow1 77

If s ̸= 0S, then, since the χJs are mutually exclusive, φ ′ is equivalent
to φ̃. For s = 0, we need to consider the additional case that none of
the χJs hold, so φ ′ is equivalent to φ̃∨ χ∅. ⌟

To complete the proof of Theorem 5.12, it suffices to consider an
arbitrary non-empty J ⊆ [m] and the r-local formula γ(x̄, ȳ) := γJ(x̄, ȳ)
and show how to transform the formula ψ ′(x̄) :=

(
s =

∑
w(ȳ).γ(x̄, ȳ)

)
into an equivalent formula in Gaifman normal form. If k = 0, then we
are done since ψ ′ is a local aggregation sentence in FOW1(P)[σ, S, W].
If k > 0, then we split the sum into two parts where one only considers
tuples ȳ where one of the elements is in a certain neighbourhood
around x̄ and the other one considers all other tuples. Formally, we
proceed as follows. Let Is :=

{
(i1, i2) ∈ S× S

∣∣ i1 +S i2 = s
}

. Then,
ψ ′(x̄) is equivalent to

∨
(i1,i2)∈I

(
ψin
i1
(x̄)∧ψout

i2
(x̄)

)
, where

ψin
i1
(x̄) :=

(
i1 =

∑
w(ȳ) .

(
γ(x̄, ȳ)∧ dist(x̄; ȳ) ⩽ 2r+1

))
and

ψout
i2

(x̄) :=
(
i2 =

∑
w(ȳ) .

(
γ(x̄, ȳ)∧ dist(x̄; ȳ) > 2r+1

))
.

For a (σ, W)-structure A and a tuple v̄ ∈
(
U(A)

)k, to check whether
A |= ψin

i1
[v̄] holds, it suffices to consider only those assignments w̄ to

ȳ where at least one of the wi is in the (2r+1)-neighbourhood of v̄.
Furthermore, we have wA(w̄) ̸= 0S only if the vertices in w̄ form a
clique in the Gaifman graph of A, so they have distance at most 1
from each other. Finally, since γ is r-local, we can deduce that ψin

i1
is

(3r+2)-local.
It remains to transform ψout

i2
into an equivalent formula in Gaifman

normal form. To achieve this, we use Corollary 5.9 to obtain a finite,
non-empty set ∆ of pairs

(
α(x̄),β(ȳ)

)
of r-local FOW1(P)[σ, S, W]-

formulas such that the formula
(
γ(x̄, ȳ)∧ dist(x̄; ȳ) > 2r+1

)
is equi-

valent to
(∨

(α,β)∈∆
(
α(x̄)∧β(ȳ)

)
∧ dist(x̄; ȳ) > 2r+1

)
.

By Lemma 5.10, we can assume that the αs in ∆ are mutually
exclusive. Let

ψ̃out
i2

:=
∨

(α,β)∈∆

(
α(x̄)∧

(
i2 =

∑
w(ȳ) .

(
β(ȳ)∧ dist(x̄; ȳ) > 2r+1

)))
.

Analogously to Claim 1, we obtain the following.

Claim 2. If i2 ̸= 0S, then ψout
i2

(x̄) is equivalent to ψ̃out
i2

(x̄). Otherwise,
if i2 = 0S, then ψout

i2
(x̄) is equivalent to ψ̃out

i2
(x̄) ∨

∧
α∈A ¬α(x̄) for

A :=
{
α
∣∣ there exists β such that (α,β) ∈ ∆

}
.

To complete the proof of Theorem 5.12, we show how to transform
a formula λ(x̄) :=

(
i2 =

∑
w(ȳ) .

(
β(ȳ)∧ dist(x̄; ȳ) > 2r+1

))
for an

arbitrary r-local formula β(ȳ) into an equivalent FOW1(P)[σ, S, W]-
formula in Gaifman normal form. Let J :=

{
(j1, j2) ∈ S× S

∣∣ j1−S j2 =

78 weighted structures and logics with weight aggregation

i2
}

. Then, λ(x̄) is equivalent to the formula
∨

(j1,j2)∈J
(
λall
j1

∧ λin
j2
(x̄)

)
,

where

λall
j1

:=
(
j1 =

∑
w(ȳ) . β(ȳ)

)
,

λin
j2
(x̄) :=

(
j2 =

∑
w(ȳ) .

(
γ(x̄, ȳ)∧ dist(x̄; ȳ) ⩽ 2r+1

))
.

Now, λall
j1

is a local aggregation sentence in FOW1(P)[σ, S, W]. Fur-
thermore, with the same argumentation as for the formula ψin

i1
above,

the formula λin
j2

is (3r + 2)-local. This completes the proof of The-
orem 5.12.

5.4 localisation of fowa1

In this section, we provide a locality result for the logic FOWA1, which
is a logic substantially more expressive than FOW1.

Theorem 5.13 (Localisation Theorem for FOWA1). Let k ∈ N. For
every FOWA1(P)[σ, S, W]-formula φ(x1, . . . , xk), there is an extension σφ
of σ with relation symbols of arity ⩽ 1, and an FOW1(P)[σφ, S, W]-formula
φ ′(x1, . . . , xk) that is a Boolean combination of local formulas and statements
of the form R() where R ∈ σφ has arity 0, for which the following holds. There
is an algorithm4 that, upon input of a (σ, W)-structure A, computes in time
|A| log |A| ·dO(1) under the logarithmic-cost measure, and in time |A| ·dO(1)

under the uniform-cost measure, where d is the degree of A, a σφ-expansion
Aφ of A such that for all v̄ ∈

(
U(A)

)k it holds that Aφ |= φ ′[v̄] if and only
if A |= φ[v̄].

We prove this by decomposing FOWA1-expressions into simpler
expressions that can be evaluated in a structure A by exploring for
each element v ∈ U(A) only a local neighbourhood around v. This is
achieved by proving a decomposition theorem (Theorem 5.20) that is
a generalisation of the decomposition for FOC1(P) provided in [56,
Theorem 6.6], and it builds upon the Gaifman normal form result of
Theorem 5.12. The remainder of this section is devoted to the proof of
Theorem 5.13.

5.4.1 Connected local terms

For every k ∈N⩾1, let Gk be the set of all graphs G with vertex set [k].
For a graph G ∈ Gk, a radius r ∈N, and a tuple x̄ = (x1, . . . , xk) of k
pairwise distinct variables, we consider the formula

δσG,r(x̄) :=
∧

{i,j}∈E(G)

distσ(xi, xj)⩽ r ∧
∧

{i,j} ̸∈E(G)

distσ(xi, xj)>r.

4 with P- and S-oracles, i. e., the operations +S, ·S for S ∈ S and checking if a tuple
belongs to JPK for P ∈ P can be done in constant time by referring to an oracle that
provides us with the answers

5.4 localisation of fowa1 79

Note that A |= δσG,r[v̄] means that the connected components of the
r-neighbourhood NA

r (v̄) correspond to the connected components of
G. Moreover, δσG,2r+1(x̄) is r-local around its free variables x̄.

The main ingredient of our decomposition of FOWA1(P)[σ, S, W]-
expressions are the connected local terms (cl terms, for short), defined
as follows. cl Term

Definition 5.14. Let r ∈N and k ∈N⩾1. A basic cl term (of radius r and
width k) is an S-term of the form∑

p.
(
ψ(x1, . . . , xk)∧ δσG,2r+1(x1, . . . , xk)

)
,

where x1, . . . , xk are k pairwise distinct variables, we have vars(p) ⊆
{x1, . . . , xk}, ψ(x1, . . . , xk) is an FOW1(P)[σ, S, W]-formula that is r-
local around (x1, . . . , xk), and G ∈ Gk is connected. A cl term (of radius
⩽ r and width ⩽ k) is built from basic cl terms (of radius ⩽ r and width
⩽ k) by using rules (7)–(9) of Definition 5.3.

Note that cl terms are “easy” with respect to query evaluation in
the following sense.

Lemma 5.15. For every fixed cl term t(y1, . . . ,yℓ) (with ℓ ⩾ 0), there is an
algorithm such that the following holds. Upon input of a (σ, W)-structure
A, within precomputation time |A| log |A| · dO(1) under the logarithmic-cost
measure and within precomputation time |A| · dO(1) under the uniform-cost
measure, where d is the degree of A, the algorithm computes a data structure
that, whenever given a tuple (v1, . . . , vℓ) ∈

(
U(A)

)ℓ, returns the value
tA[v1, . . . , vℓ] in time O

(
log |A|

)
under the logarithmic-cost measure and in

constant time under the uniform-cost measure.

Proof. It suffices to prove the lemma for basic cl terms. The statement
for general cl terms then follows by induction. Consider a basic cl term
t(y1, . . . ,yℓ) of the form

∑
p.
(
ψ(x1, . . . , xk)∧ δσG,2r+1(x1, . . . , xk)

)
.

Recall from Definition 5.14 that vars(p) ⊆ {x1, . . . , xk} and G is a con-
nected graph. We can assume w.l.o.g. that (y1, . . . ,yℓ) = (x1, . . . , xℓ)
and vars(p) = {xℓ+1, . . . , xk}. Let S ∈ S be the type of the W-product
p.

Given a (σ, W)-structure A and an element u ∈ U(A), we can explore
the R-neighbourhood of u for R := r+ (k−1)(2r+1) (cf. Fact 2.1) and
thereby compute the set Mu of all v̄ = (v1, . . . , vk) ∈

(
U(A)

)k with
v1 = u such that (A, v̄) |= (ψ∧ δσG,2r+1). For each such tuple v̄, we
compute and store the value sv̄ := pA[vℓ+1, . . . , vk] ∈ S. Then, we
group the tuples in Mu by their prefix (v1, . . . , vℓ) of length ℓ, and for
each group, we compute the +S-sum su,(v1,...,vℓ) of the values sv̄ of all
tuples v̄ ∈Mu that have the same prefix (v1, . . . , vℓ).

In case that ℓ = 0, t is a ground term, and we have tA =
∑
S

{
su,()

∣∣
u ∈ U(A)

}
. In case that ℓ ⩾ 1, whenever given an arbitrary tuple

(v1, . . . , vℓ) ∈
(
U(A

)ℓ, we can determine tA[v1, . . . , vℓ] as follows.

80 weighted structures and logics with weight aggregation

Let u := v1. If Mu contains a tuple with prefix (v1, . . . , vℓ), then
tA[v1, . . . , vℓ] = su,(v1,...,vℓ), and otherwise tA[v1, . . . , vℓ] = 0S.

Thus, upon input of a (σ, W)-structure A, we can compute a data
structure which, on input (v1, . . . , vℓ) ∈

(
U(A)

)ℓ, returns the value
tA[v1, . . . , vℓ].

The data structure can be computed within precomputation time
|A| log |A| · dO(1) under the logarithmic-cost measure and within pre-
computation time |A| · dO(1) under the uniform-cost measure, where
d is the degree of A. Once the data structure has been computed,
the values tA[v1, . . . , vℓ] can be returned in time O

(
log |A|

)
under the

logarithmic-cost measure and in constant time under the uniform-cost
measure.

Our decomposition of FOWA1(P)[σ, S, W]-expressions proceeds by
induction on the construction of the input expression. The main tech-
nical tool for the construction is the following lemma.

Lemma 5.16. Let r ∈ N, k ∈ N⩾1, let x̄ = (x1, . . . , xk) be a tuple of k
pairwise distinct variables, let ψ(x̄) be an r-local FOW1(P)[σ, S, W]-formula,
and consider an S-term t(y1, . . . ,yℓ) of the form

∑
p.ψ(x1, . . . , xk), where

p is a W-product, ℓ ∈N, and {y1 . . . ,yℓ} ⊆ {x1, . . . , xk}. Then, there exists
a cl term t̂(y1, . . . ,yℓ) of radius ⩽ r and width ⩽ k, such that t̂A[v̄] = tA[v̄]
holds for every (σ, W)-structure A and every v̄ ∈

(
U(A)

)ℓ. Furthermore,
there is an algorithm which, upon input of r and t, constructs the cl term t̂.

Proof. For a (σ, W)-structure A and a formula φ(x̄), we consider the
set MA

φ :=
{
v̄ ∈

(
U(A)

)k ∣∣ A |= φ[v̄]
}

. For every graph G ∈ Gk,
let ψG(x̄) := ψ(x̄)∧ δσG,2r+1(x̄). Note that ψG(x̄) is r-local around x̄.
Furthermore, for every (σ, W)-structure A, the set MA

ψ is the disjoint
union of the sets MA

ψG
for all G ∈ Gk. Therefore, t is equivalent to the

+-sum, over all G ∈ Gk, of the S-terms tψG :=
∑
p.ψG(x1, . . . , xk). To

complete the proof of Lemma 5.16, it therefore suffices to show that,
for every G ∈ Gk, the S-term t

ψ
G is equivalent to a cl term of radius r.

We prove this by induction on the number of connected components
of G. That is, we show that the following statement (∗)c is true for
every number of components c ∈N⩾1.

(∗)c: For every k ⩾ c, for every tuple x̄ = (x1, . . . , xk) of k pair-
wise distinct variables, for every radius r ∈N, for every r-local
FOW1(P)[σ, S, W]-formula ψ(x̄), for every W-product p with
vars(p) ⊆ {x1, . . . , xk}, and for every graph G ∈ Gk that has at
most c connected components, the S-term t

ψ
G is equivalent to a

cl term of radius r.

In the induction base, for c = 1, we only consider connected graphs G.
Thus, by Definition 5.14, tψG is a basic cl term.

For the induction step from c to c+ 1, consider a k ⩾ c+ 1 and
a graph G = (V ,E) ∈ Gk that has c+ 1 connected components. Let

5.4 localisation of fowa1 81

V ′ be the set of all vertices of V that are connected to the vertex 1,
and let V ′′ := V \ V ′ contain all other vertices. Let G ′ := G[V ′] and
G ′′ := G[V ′′] be the induced subgraphs ofG on V ′ and V ′′, respectively.
Clearly, G is the disjoint union of G ′ and G ′′, G ′ is connected, and
G ′′ has c connected components. W.l.o.g., let V ′ = {1, . . . , ℓ} and V ′′ =

{ℓ+1, . . . ,k} for an ℓ with 1 ⩽ ℓ < k. For a tuple v̄ = (v1, . . . , vk), we let
v̄ ′ := (v1, . . . , vℓ) and v̄ ′′ := (vℓ+1, . . . , vk).

Now consider a radius r ∈ N and the formula δσG,2r+1(x̄) for x̄ =

(x1, . . . , xk). For every σ-structure A and every tuple v̄ ∈
(
U(A)

)k with
A |= δσG,2r+1[v̄], the r-neighbourhood NA

r (v̄) is the disjoint union of
the r-neighbourhoods NA

r (v̄
′) and NA

r (v̄
′′).

Let ψ(x̄) be an FOW1(P)[σ, S, W]-formula that is r-local. By using
Corollary 5.9, we can compute a decomposition of ψ(x̄) into a formula
of the form∨

i∈I

(
ψ ′
i(x̄

′)∧ψ ′′
i (x̄

′′)
)

,

where I is a finite non-empty set, ψ ′
i(x̄

′) and ψ ′′
i (x̄

′′) are r-local
FOW1(P)[σ, S, W]-formulas, and the ψ ′

i(x̄
′) are mutually exclusive.

This implies that, for every (σ, W)-structure A, the set MA
ψG

is the
disjoint union of the sets MA

(ψ ′
i∧ψ

′′
i ∧δ

σ
G,2r+1)

over all i ∈ I.
Now let p be an arbitrary W-product with vars(p) ⊆ {x1, . . . , xk},

and consider the S-term t
ψ
G =

∑
p.ψG(x1, . . . , xk). From the above

reasoning, it follows that tψG is equivalent to the +-sum, over all
i ∈ I, of the S-terms tψ,i

G :=
∑
p.
(
ψ ′
i(x̄

′)∧ψ ′′
i (x̄

′′)∧ δσG,2r+1(x̄)
)
. To

complete the proof, it suffices to show that tψ,i
G is equivalent to a cl

term of radius r.
By the definition of the formula δσG,2r+1(x̄), we obtain that the

formula ψ ′
i(x̄

′)∧ψ ′′
i (x̄

′′)∧ δσG,2r+1(x̄) is equivalent to the formula

ϑ ′i(x̄
′) ∧ ϑ ′′i (x̄

′′) ∧ distσ(x̄ ′; x̄ ′′) > 2r+1, where

ϑ ′i(x̄
′) := ψ ′

i(x̄
′)∧δσG ′,2r+1(x̄

′) and ϑ ′′i (x̄
′′) := ψ ′′

i (x̄
′′)∧δσG ′′,2r+1(x̄

′′).

Therefore, for every (σ, W)-structure A, we have

MA
(ψ ′

i∧ψ
′′
i ∧δ

σ
G,2r+1)

=
(
MA
ϑ ′
i
×MA

ϑ ′′
i

)
\ XA

i ,

for

XA
i :=

{
v̄ ∈

(
U(A)

)k ∣∣ A |= ϑ ′i[v̄
′], A |= ϑ ′′i [v̄

′′], distA(v̄ ′, v̄ ′′) ⩽ 2r+1
}

.

Let Hk be the set of all graphs H ∈ Gk with H ̸= G, but H[V ′] = G ′ and
H[V ′′] = G ′′. Then every H ∈ Hk has at most c connected components.
Furthermore, for every (σ, W)-structure A, the set XA

i is the disjoint
union over all H ∈ Hk of the sets

XA
i,H :=

{
v̄ ∈

(
U(A)

)k ∣∣ A |= ϑ ′i[v̄
′], A |= ϑ ′′i [v̄

′′], A |= δσH,2r+1[v̄]
}

.

82 weighted structures and logics with weight aggregation

Next, we take a closer look at the W-product p of type S ∈ S

used in the S-term t
ψ,i
G . If p contains a factor w(ȳ) for some w ∈ W

and a tuple ȳ that contains variables from both x̄ ′ = (x1, . . . , xℓ) and
x̄ ′′ = (xℓ+1, . . . , xk), then pA[v̄] = 0S for every (σ, W)-structure A and
every tuple v̄ ∈ MA

(ψ ′
i∧ψ

′′
i ∧δ

σ
G,2r+1)

. Thus, tψ,i
G would be equivalent

to the S-term 0S, and we would be done. Hence, in the following,
let p be of the form p ′

1 · p ′′
1 · · · · · p ′

m · p ′′
m for some m ∈ N⩾1, where

vars(p ′
i) ⊆ {x1, . . . , xℓ} and vars(p ′′

i) ⊆ {xℓ+1, . . . , xk} for all i ∈ [m].
Let A be a (σ, W)-structure and fix an assignment β : free

(
t
ψ,i
G

)
→

U(A). Evaluating tψ,i
G in (A,β) means computing the value

r
t
ψ,i
G

z(A,β)
=

∑
S

{
pA[v̄]

∣∣ v̄ ∈MA
(ψ ′

i∧ψ
′′
i ∧δ

σ
G,2r+1)

,

v̄ agrees with β on free(tψ,i
G)

}
.

Since M(ψ ′
i∧ψ

′′
i ∧δ

σ
G,2r+1)

= (MA
ϑ ′
i
×MA

ϑ ′′
i
) \

(⋃
H∈Hk

XA
i,H

)
, where the

sets XA
i,H for H ∈ Hk are pairwise disjoint and contained in MA

ϑ ′
i
×

MA
ϑ ′′
i

, the value
r
t
ψ,i
G

z(A,β)
is equal to∑

S

{
pA[v̄]

∣∣ v̄ ∈MA
ϑ ′
i
×MA

ϑ ′′
i

, v̄ agrees with β on free(tψ,i
G)

}
−S

(∑
H∈Hk

∑
S

{
pA[v̄]

∣∣ v̄ ∈ XA
i,H, v̄ agrees with β on free(tψ,i

G)
})

.

Moreover, since p = p ′
1 · p ′′

1 · · · · · p ′
m · p ′′

m, we can decompose the first

term for computing
r
t
ψ,i
G

z(A,β)
even further into factors of the form∑

S

{
p ′A
j [v̄ ′]

∣∣ v̄ ′ ∈MA
ϑ ′
i
, v̄ ′ agrees with β on free(ϑ ′i) \ vars(p ′

j)
}

and∑
S

{
p ′′A
j [v̄ ′′]

∣∣ v̄ ′′ ∈MA
ϑ ′′
i

, v̄ ′′ agrees with β on free(ϑ ′′i) \ vars(p ′′
j)
}

for j ∈ [m]. Therefore, tψ,i
G (x̄) is equivalent to

m∏
j=1

(
t ′j(x̄

′) · t ′′j (x̄ ′′)
)
−

∑
H∈Hk

tH(x̄)

for

t ′j(x̄
′) :=

∑
p ′
j.ϑ

′
i(x̄

′),

t ′′j (x̄
′′) :=

∑
p ′′
j .ϑ ′′i (x̄

′′), and

tH(x̄) :=
∑

p.
(
ϑ ′i(x̄

′)∧ ϑ ′′i (x̄
′′)∧ δσH,2r+1(x̄)

)
.

By the induction hypothesis (∗)c, each of the terms t ′i, t
′′
i , and tH is

equivalent to a cl term of radius r. Hence, also tψ,i
G is equivalent to a

cl term of radius r. This completes the proof of Lemma 5.16.

5.4 localisation of fowa1 83

As a consequence of Lemma 5.16, we obtain the following result.

Lemma 5.17. Let s ∈ N and let χ1, . . . ,χs be arbitrary sentences that
can be evaluated in (σ, W)-structures.5 Let r ∈ N, k ∈ N⩾1, and let x̄ =

(x1, . . . , xk) be a tuple of k pairwise distinct variables. Let φ(x̄) be a Boolean
combination of the sentences χ1, . . . ,χs and of r-local FOW1(P)[σ, S, W]-
formulas. Consider an S-term t(y1, . . . ,yℓ) of the form

∑
p.φ(x1, . . . , xk),

where p is a W-product, ℓ ∈N, and {y1, . . . ,yℓ} ⊆ {x1, . . . , xk}. For every
I ⊆ [s], there is a cl term t̂I (of radius ⩽ r and width ⩽ k) such that the
following holds. For every (σ, W)-structure A, there is exactly one set J ⊆ [s]

such that A |= χJ for

χJ :=
∧
j∈J
χj ∧

∧
j∈[s]\J

¬χj,

and, for this set J, we have t̂AJ [v̄] = t
A[v̄] for every v̄ ∈

(
U(A)

)ℓ.
Furthermore, there is an algorithm which, upon input of r, t, and J,

constructs t̂J.

Proof. We can assume w.l.o.g. that φ(x̄) is of the form∨
J⊆[s]

(
χJ ∧ψJ(x̄)

)
,

where, for each J ⊆ [s], ψJ(x̄) is an r-local FOW1(P)[σ, S, W]-formula.
For every J ⊆ [s] let t̂J be the cl term obtained by Lemma 5.16 for
the term tJ :=

∑
p.ψJ(x̄). Now consider an arbitrary J ⊆ [s] and a

σ-structure A with A |= χJ. Then, for every tuple v̄ ∈
(
U(A)

)ℓ, we have
tA[v̄] =

(∑
p.ψ(x̄)

)A
[v̄] =

(∑
p.ψJ(x̄)

)A
[v̄] = t̂AJ [v̄].

5.4.2 A connected local normal form for FOW1

From now on, we assume that whenever S contains the integer ring
(Z,+, ·), there is a weight symbol one ∈W of arity 1 and type Z such
that, in every (σ, W)-structure A that we consider, we have one(v) =

1 ∈ Z for all v ∈ U(A). By combining Lemma 5.16 with the Gaifman
normal form for FOW1 (Theorem 5.12), we obtain the following normal
form, which may be of independent interest. cl Normal form

Theorem 5.18 (cl Normal form). Let S contain the integer ring (Z,+, ·).
Every formula φ(x̄) of FOW1(P)[σ, S, W] is equivalent to a Boolean combin-
ation φ ′(x̄) of

(a) local FOW1(P)[σ, S, W]-formulas ψ(x̄),

(b) local aggregation sentences in FOW1(P)[σ, S, W], and

5 We do not restrict attention to FOW1(P)[σ, S, W]-sentences here—the χjs may be
sentences of any logic, e.g., FOWA(P)[σ, S, W].

84 weighted structures and logics with weight aggregation

(c) statements of the form “g ⩾ 1”, for a ground cl term g of type Z.

Furthermore, there is an algorithm which, given an FOW1(P)[σ, S, W]-
formula φ(x̄), transforms it into an equivalent such formula φ ′(x̄) and
outputs the radius of each ground cl term in φ ′ as well as a number r such
that every local formula in φ ′ is r-local.

Proof. By Theorem 5.12, it suffices to translate a basic local sentence
into a statement of the form “g ⩾ 1” for a ground cl term g of type Z.
For a basic local sentence χ := ∃y1 · · · ∃yk ϑ(y1, . . . ,yk) with

ϑ(y1, . . . ,yk) :=
∧

1⩽i<j⩽k

dist(yi,yj)>2r ∧

k∧
i=1

ψ(yi),

we use the ground term gχ :=
∑
p.ϑ(y1, . . . ,yk) for the W-product

p := one(y1) · · · · · one(yk). Note that ϑ(y1, . . . ,yk) is r-local around
its free variables. Hence, by Lemma 5.16, we obtain a ground cl term
ĝχ such that ĝAχ = gAχ for every (σ, W)-structure A. Furthermore, we
have A |= χ ⇐⇒ gAχ ⩾ 1 ⇐⇒ ĝAχ ⩾ 1. This completes the proof of
Theorem 5.18.

We use the notion cl normal form to denote the formulas φ ′(x̄)

provided by Theorem 5.18. Note that cl normal forms do not neces-
sarily belong to FOW1(P)[σ, S, W], but can be viewed as formulas in
FOWA(P)[σ, S, W], where P contains a unary predicate P⩾1 of type
Z with

q
P⩾1

y
:= N⩾1. Then, statements of the form “g ⩾ 1” can be

expressed via P⩾1(g).

5.4.3 A decomposition of FOWA1-expressions

Our decomposition of FOWA1(P)[σ, S, W] utilises the cl normal form
from Theorem 5.18 and is based on an induction on the aggregation
depth dag(ξ) of a formula or term ξ, that is, the maximal nesting
depth of term constructions of the form

∑
p.ψ (i.e., constructions by

rule (10) of Definition 5.3). The base case of our decomposition of
FOWA1(P)[σ, S, W] is provided by the following lemma. The proof
uses Theorem 5.18.

Lemma 5.19. Let S contain the integer ring (Z,+, ·). Let φ be a formula
in FOWA1(P)[σ, S, W] of the form P(t1, . . . , tm) with P ∈ P, m = ar(P),
and where t1, . . . , tm are S-terms of aggregation depth at most 1. Then, φ is
equivalent to a Boolean combination of

(a) formulas of the form P(t ′1, . . . , t ′m), for cl terms t ′1, . . . , t ′m with free
variables free(t ′i) = free(ti) for all i ∈ [m],

(b) local aggregation sentences in FOW1(P)[σ, S, W], and

(c) statements of the form “g ⩾ 1” for ground cl terms g of type Z.

5.4 localisation of fowa1 85

Also, there is an algorithm which transforms an input formula φ into such a
Boolean combination φ ′, and which outputs the radius of each cl term and
each local formula in φ ′.

Proof. From the definition of FOWA1 (Definition 5.4), we know that
the free variables of φ are either free(φ) = ∅ or free(φ) = {x} for some
variable x. Furthermore, we know that for every i ∈ [m], the S-term ti
is built by using rules (7)–(9) and S-terms ϑ of the form

∑
p.ϑ ′ for a

W-product p such that free(ϑ ′) \ vars(p) ⊆ {x}. Let Θ be the set of all
these S-terms ϑ and let Θ ′ be the set of all the according formulas ϑ ′.

By assumption, we have dag(φ) ⩽ 1. Therefore, every ϑ ′ ∈ Θ ′ has
aggregation depth 0. Thus, every ϑ ′ ∈ Θ ′ is an FOW1(P)[σ, S, W]-
formula. By Theorem 5.18, for each ϑ ′ in Θ ′, we obtain an equivalent
formula φϑ ′ in cl normal form. Let Φ be the set of all these φϑ ′ .

For each ϑ ′ in Θ ′, the formula φϑ ′ is a Boolean combination of (a)
FOW1(P)[σ, S, W]-formulas that are local around the free variables
of ϑ ′, (b) local aggregation sentences in FOW1(P)[σ, S, W], and (c)
statements of the form “g ⩾ 1” for a ground cl term g of type Z.

Let χ1, . . . ,χs be a list of all statements of the forms (b) or (c) such
that each formula in Φ is a Boolean combination of statements in
{χ1, . . . ,χs} and of FOW1(P)[σ, S, W]-formulas that are local around
their free variables. For every J ⊆ [s] let χJ :=

∧
j∈J χj ∧

∧
j∈[s]\J ¬χj.

Let r ∈ N be such that each of the local FOW1(P)[σ, S, W]-formulas
that occur in a formula in Φ is r-local around its free variables. For
each ϑ in Θ of the form

∑
p.ϑ ′, we apply Lemma 5.17 to the term

tϑ ′ :=
∑

p.φϑ ′

and obtain for every J ⊆ [s] a cl term t̂ϑ ′,J for which the following is
true. If free(ϑ ′) = ∅, then (ϑ ′)A = (t̂ϑ ′,J)

A for every (σ, W)-structure
A with A |= χJ. Otherwise, if free(ϑ ′) = {x}, then (ϑ ′)A[v] = (t̂ϑ ′,J)

A[v]

for every (σ, W)-structure A with A |= χJ and for every v ∈ U(A).
Thus, for each J ⊆ [s], we have(

χJ ∧ P(t1, . . . , tm)
)
≡

(
χJ ∧ P(t1,J, . . . , tm,J)

)
,

where, for every i ∈ [m], we let ti,J be the cl term obtained from ti
by replacing each occurrence of a term ϑ ′ ∈ Θ ′ with the term t̂ϑ ′,J. In
summary, we obtain the following:

φ = P(t1, . . . , tm) ≡
∨
J⊆[s]

(
χJ ∧ P(t1, . . . , tm)

)
≡

∨
J⊆[s]

(
χJ ∧ P(t1,J, . . . , tm,J)

)
=: φ ′.

The formula χJ is a Boolean combination of local aggregation sentences
in FOW1(P)[σ, S, W] and of statements of the form “g ⩾ 1” for ground
cl terms g of type Z. Furthermore, all terms ti,J are cl terms with
free(ti,J) ⊆ free(ti), and we can easily modify them to achieve that
free(ti,J) = free(ti). This completes the proof of Lemma 5.19.

86 weighted structures and logics with weight aggregation

We are now ready for the decomposition theorem for FOWA1, which
can be viewed as a generalisation of the decomposition theorem for
FOC1 provided in [56].

Theorem 5.20 (Decomposition of FOWA1). Let S contain the integer ring
(Z,+, ·). Let z be a fixed variable in vars. For every d ∈ N and for every
FOWA1(P)[σ, S, W]-formula φ(x̄) of aggregation depth dag(φ) = d, there
exists a sequence (L1, . . . ,Ld+1,φ ′) with the following properties.

(1) For every i ∈ [d+ 1], we have Li = (τi, ιi), where τi is a finite set of
relation symbols of arity ⩽ 1 that do not belong to σi−1 := σ∪

⋃i−1
j=1 τj.

Furthermore, ιi is a mapping that associates with every relation symbol
R ∈ τi a formula ιi(R)

(a) of the form P(t1, . . . , tm), where P ∈ P,m = ar(P), and t1, . . . , tm
are cl terms of signature σi−1 with free(tj) ⊆ {z} for each j ∈ [m],
or

(b) that is a local aggregation sentence in FOW1(P)[σi−1, S, W] or a
statement of the form “g ⩾ 1” for a ground cl term g of signature
σi−1 and of type Z.

If R has arity 0, then ιi(R) has no free variable. If R has arity 1, then z is
the unique free variable of ιi(R) (thus, ιi(R) is of the form (a)).

(2) φ ′(x̄) is a Boolean combination of (a) FOW1(P)[σd+1, S, W]-formulas
ψ(x̄) that are local around their free variables x̄, where σd+1 := σ ∪⋃d+1
i=1 τi, and (b) statements of the form R(), where R is a 0-ary relation

symbol in σd+1. In case that free(φ) = ∅, φ ′ only contains statements
of the latter form.

(3) For every (σ, W)-interpretation I = (A,β), we have I |= φ if and
only if Id+1 |= φ ′, where Id+1 = (Ad+1,β), and Ad+1 is the σd+1-
expansion of A defined as follows. We set A0 := A. Furthermore, for
every i ∈ [d+ 1], Ai is the σi-expansion of Ai−1, where for every unary
R ∈ τi, we have RAi :=

{
v ∈ U(A)

∣∣ (Ai−1, v) |= ιi(R)
}

and for every
0-ary R ∈ τi we have RAi := {()} if Ai−1 |= ιi(R), and RAi := ∅ if
Ai−1 ̸|= ιi(R).

Moreover, there is an algorithm which constructs such a sequence D =

(L1, . . . ,Ld+1,φ ′) for an input formula φ and outputs the radius of each
cl term in D as well as a number r such that every local formula in φ ′ is
r-local around its free variables.

Proof. We proceed by induction on i to construct for all i ∈ [0,d] a tuple
Li = (τi, ιi) and a FOWA1(P)[σi, S, W]-formula φi(x̄) of aggregation
depth (d−i), such that for every (σ, W)-interpretation I = (A,β) and
the interpretation Ii := (Ai,β), we have I |= φ ⇐⇒ Ii |= φi. The last
step i = d+ 1 will be handled separately.

For i = 0, we are done by letting τ0 := ∅, σ0 := σ, φ0 := φ, and ι0
be the mapping with empty domain.

5.4 localisation of fowa1 87

Now assume that for some i < d, we have already constructed Li =
(τi, ιi) and φi. To construct Li+1 = (τi+1, ιi+1) and φi+1, we proceed
as follows. Let Π be the set of all FOWA1(P)[σi, S, W]-formulas of
aggregation depth ⩽ 1 of the form P(t1, . . . , tm), for P ∈ P, that occur
in φi. Consider an arbitrary formula π in Π of the form P(t1, . . . , tm).
From Definition 5.4, we know that there is a variable x such that
free(tj) ⊆ {x} for every j ∈ [m]. By Lemma 5.19, π is equivalent to a
Boolean combination π ′ of

(a) formulas of the form P(t ′1, . . . , t ′m), for cl terms t ′1, . . . , t ′m of sig-
nature σi, where free(t ′j) = free(tj) ⊆ {x} for each j ∈ [m],

(b) local aggregation sentences in FOW1(P)[σi, S, W], and

(c) statements of the form “g ⩾ 1” for ground cl terms g of signature
σi.

For each statement χ of the form (b) or (c), and for statements χ of
the form (a) with free(χ) = ∅, we include into τi+1 a 0-ary relation
symbol Rχ, we replace each occurrence of χ in π ′ with the new atomic
formula Rχ(), and we let ιi+1(Rχ) := χ. For each statement χ in π of
the form (a) with free(χ) = {x}, we include into τi+1 a unary relation
symbol Rχ, we replace each occurrence of χ in π ′ with the new atomic
formula Rχ(x), and we let ιi+1(Rχ) be the formula obtained from χ

by consistently replacing every free occurrence of the variable x with
the variable z. We write π ′′ for the resulting formula. Clearly, π ′′ is
of signature σi+1 := σi ∪ τi, it has aggregation depth 0, and for every
σ-interpretation I = (A,β) and Ii := (Ai,β) and Ii+1 := (Ai+1,β), we
have Ii |= π if and only if Ii+1 |= π ′′.

The induction step is completed by letting φi+1 be the formula
obtained from φi by replacing every occurrence of a formula π ∈
Π with the formula π ′′. It can easily be verified that φi+1 is an
FOWA1(P)[σi+1, S, W]-formula of aggregation depth dag(φi) − 1 =(
(d− i) − 1

)
=

(
d− (i+ 1)

)
and that Ii |= φi ⇐⇒ Ii+1 |= φi+1.

By the above induction, we have constructed L1, . . . ,Ld and an
FOWA1(P)[σd, S, W]-formula φd of aggregation depth 0. Hence, φd
is an FOW1(P)[σd, S, W]-formula. Theorem 5.18 yields an equivalent
formula φ̃ of signature σd in cl normal form. That is, φ̃ is a Boolean
combination of

(a) local FOW1(P)[σd, S, W]-formulas

(b) local aggregation sentences in FOW1(P)[σd, S, W], and

(c) statements of the form “g ⩾ 1”, for a ground cl term g of type Z

and of signature σd.

For each statement χ of the form (b) or (c), we include into τd+1 a new
relation symbol Rχ of arity 0, we replace each occurrence of χ in φ̃
with the new atomic formula Rχ(), and we let ιd+1(Rχ) := χ. Letting
φ ′ be the resulting formula φ̃ completes the proof.

88 weighted structures and logics with weight aggregation

cl Decomposition
We call the sequence D = (L1, . . . ,Ldag(φ)+1,φ ′) that Theorem 5.20

provides for a formula φ in FOWA1(P)[σ, S, W] a cl decomposition of φ.
By combining Theorem 5.20 with Lemmas 5.15 and 5.16, we can now
prove Theorem 5.13, which provides for every FOWA1-formula φ an
FOW1-formula φ ′ over an enriched signature σφ such that φ holds in
a σ-structure A if and only if φ ′ holds in a certain σφ-expansion Aφ
of A. Furthermore, it provides an algorithm to compute Aφ from A

and φ.

Proof of Theorem 5.13. First, we use Theorem 5.20 to compute a cl de-
composition D = (L1, . . . ,Ld+1,φ ′) of φ, for d := dag(φ). This for-
mula φ ′ is the desired formula. We let σφ := σd+1 := σ∪

⋃d+1
i=1 τi and

Aφ := Ad+1. To compute Aφ, we proceed as follows.
Let A0 := A. For each i ∈ [d + 1], compute the σi-expansion of

Ai−1. To achieve this, consider for each R ∈ τi the formula ιi(R). This
formula is of signature σi−1 and

(a) of the form P(t1, . . . , tm) for a P ∈ P and cl terms t1, . . . , tm,

(b) a local aggregation sentence of the form
(
s =

∑
w(ȳ).λ(ȳ)

)
for a

local FOW1(P)[σi−1, S, W]-formula λ, or

(c) a statement of the form “g ⩾ 1” for a ground cl term g of type Z.

By Lemma 5.16, the term
∑

w(ȳ).λ(ȳ) from a formula of form (b) is
equivalent to a ground cl term. Thus, in all three cases, ιi(R) is a simple
statement that concerns one or several cl terms and that involves at
most one free variable. By using Lemma 5.15, we can compute, in
time |A| log |A| · dO(1) under the logarithmic-cost measure and in time
|A| · dO(1) under the uniform-cost measure, for each such cl term t the
values tA[v] for all v ∈ U(A) (respectively the value tA, if t is a ground
term). Then, we combine the values and use a P-oracle to check for
each v ∈ U(A) whether ιi(R) is satisfied by (Ai−1, v), and we store the
new relation R(Ai) accordingly.

This completes the computation of Aφ and thus the proof of The-
orem 5.13.

6
L E A R N I N G L O G I C S W I T H W E I G H T A G G R E G AT I O N

In this chapter, we generalise the results of Grohe and Ritzert [55]
for first-order logic on relational structures, which we described in
Chapter 3, to logics with weight aggregation on weighted structures.
To do so, in Section 6.1, we describe a framework to learn concepts
on weighted structures, without restricting ourselves to a specific lo-
gic. As in Chapters 3 and 4, we are interested in concepts that can
be learned in sublinear time. Hence, we describe properties of the
formulas (or rather of the sets of formulas) the hypotheses are based
upon that are sufficient to yield learning results with suitable running
times. We prove learning results for consistent learning in Section 6.2
and for PAC learning in Section 6.3. Finally, in Section 6.4, we use the
introduced framework and the locality properties from Chapter 5 to
obtain learning results for concepts that can be described in the weight-
aggregation logic FOWA1. More specifically, we show that concepts
definable in FOWA1 over weighted structures of at most polylogar-
ithmic degree are agnostically PAC-learnable in polylogarithmic time
after pseudo-linear time preprocessing.

6.1 learning with precomputation

Throughout this chapter, fix a collection S of rings and/or abelian
groups, an S-predicate collection (P, ar, type, J·K), and a finite set W of
weight symbols. Furthermore, fix numbers k, ℓ ∈N. Let L be a logic
(e.g. FO, FOW1(P), FOWA1(P), FOWA(P)), let σ be a signature, and
let Φ ⊆ L[σ, S, W] be a set of formulas φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ.
Analogously to the learning problems from the previous chapters, for
a (σ, W)-structure A, we consider the instance space X =

(
U(A)

)k and
concepts from the concept class

HΦ,k,ℓ(A) =
{
hAφ,w̄

∣∣ φ ∈ Φ, w̄ ∈
(
U(A)

)ℓ},

where hAφ,w̄(x̄) :
(
U(A)

)k → {0, 1} is the mapping that maps a tuple

v̄ ∈
(
U(A)

)k to Jφ(v̄, w̄)KA.
As in Chapters 3 and 4, instead of allowing random access to the

background structure, we limit our algorithms to have only local access.
In many applications, the same background structure is used mul-

tiple times to learn different concepts. Hence, similarly to the ap-
proaches in [47, 53], we allow a precomputation step to enrich the
background structure with additional information. That is, instead of
learning on a (σ, W)-structure A, we use an enriched (σ ′, W)-structure
A ′, which has the same universe as A, but σ ′ ⊇ σ contains additional

89

90 learning logics with weight aggregation

relation symbols. The hypotheses we compute may make use of this
additional information and thus, instead of representing them via
formulas from the fixed set Φ, we consider a set Φ ′ of formulas of
signature σ ′. These formulas may even belong to a logic L′ different
from L.

For the sets of formulas Φ ⊆ L[σ, S, W] and Φ ′ ⊆ L′[σ ′, S, W], we
require that for every (σ, W)-structure A, there is a (σ ′, W)-structure
A ′ with U(A ′) = U(A) such that HΦ,k,ℓ(A) ⊆ HΦ ′,k,ℓ(A

′), so every
concept that can be defined on A using Φ can also be defined on A ′

using Φ ′. In our algorithms, we assume that we are given local access
to the precomputed structure A ′.

6.2 consistent learning

The consistent-learning problem is formally defined as follows.

Learn-Consistent-Precomp(k,Φ,Φ ′)

Input: (σ ′, W)-structure A ′ that has been computed from the
input (σ, W)-structure A with U(A ′) = U(A), training

sequence T ∈
((
U(A)

)k × {0, 1}
)m

Problem: Return a formula φ ′ ∈ Φ ′ and a tuple w̄ ′ ∈
(
U(A)

)ℓ
such that the hypothesis hA

′

φ ′,w̄ ′ is consistent with T . The
algorithm may reject if there is no formula φ ∈ Φ and
tuple w̄ ∈

(
U(A)

)ℓ such that the hypothesis hAφ,w̄ is
consistent with T .

Next, we examine requirements for Φ and Φ ′ that help us solve
Learn-Consistent-Precomp efficiently. Following the approach by
Grohe and Ritzert presented in Section 3.3, to obtain algorithms that
run in sublinear time, we study concepts that can be represented via
a set of local formulas Φ with a finite set Φ ′ of normal forms. Using
Feferman-Vaught decompositions and the locality of the formulas, we
can then limit the search space for the parameters to those that are
in a certain neighbourhood of the training sequence. Recall that Φ is
a set of formulas φ(x̄, ȳ) in L[σ, S, W] with |x̄| = k and |ȳ| = ℓ. In the
following, we require Φ to have the following property.

Property 6.1. There are a signature σ ′, a logic L′, an r ∈N, and a finite
set of r-local formulas Φ ′ ⊆ L′[σ ′, S, W] such that the following hold.

(1) For every (σ, W)-structure A, there is a (σ ′, W)-structure A ′ with
U(A ′) = U(A) such that, for every formula φ(x̄, ȳ) ∈ Φ, there is a
formula φ ′(x̄, ȳ) ∈ Φ ′ with A |= φ[v̄, w̄] ⇐⇒ A ′ |= φ ′[v̄, w̄] for all
v̄ ∈

(
U(A)

)k, w̄ ∈
(
U(A)

)ℓ.
(2) Every φ ′ ∈ Φ ′ has, for every partition (z̄1; z̄2) of the free variables

of φ ′, a Feferman-Vaught decomposition in Φ ′ w.r.t. (z̄1; z̄2).

6.2 consistent learning 91

(3) The set Φ ′ is, up to equivalence, closed under Boolean combin-
ations. That is, for all φ ′

1,φ ′
2 ∈ Φ ′, the set Φ ′ contains formulas

equivalent to ¬φ ′
1 and to (φ ′

1 ∨φ
′
2).

In the following, let Φ ′ be the set of formulas mentioned in Prop-
erty 6.1. Moreover, for a (σ, W)-structure A, we call the structure
A ′ from Property 6.1 the associated structure, and we say that the
structure A ′ is associated with the structure A. Our first main result
for this chapter is that Property 6.1 suffices to solve the problem
Learn-Consistent-Precomp.

Theorem 6.2 (Consistent learning with precomputation). There is an
algorithm that solves Learn-Consistent-Precomp(k,Φ,Φ ′) with local
access to a structure A ′ that is associated with the input structure A in time
fΦ ′(A ′) ·

(
logn+ d+m

)O(1) under the logarithmic-cost measure and in
time fΦ ′(A ′) ·

(
d+m

)O(1) under the uniform-cost measure, where A, A ′,
Φ, and Φ ′ are as described in Property 6.1, m is the number of training
examples, n and d are the size and the degree of A ′, and fΦ ′(A ′) is an upper
bound on the time complexity of model checking for formulas in Φ ′ on A ′.

Let A be a (σ, W)-structure and let A ′ and Φ ′ be as in Property 6.1.
To prove Theorem 6.2, we present an algorithm that follows similar
ideas as the algorithms described in Section 3.3 and Chapter 4. While
the set of possible formulas Φ ′ already has constant size, we have
to reduce the parameter space to obtain an algorithm that runs in
sublinear time. Since the formulas in Φ ′ are r-local, we show that it
suffices to consider parameters in a neighbourhood of the training
sequence with a fixed radius.

For a training sequence T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
and a radius

r ′ ∈N, let NA
r ′(T) :=

⋃
i∈[m]N

A
r ′(v̄i).

Lemma 6.3. Let T ∈
((
U(A)

)k × {0, 1}
)m

be a training sequence that
is consistent with some classifier in HΦ ′,k,ℓ(A

′). Then there are a formula
φ ′(x̄, ȳ) ∈ Φ ′ and a tuple w̄ ′ ∈

(
NA ′

(2r+1)ℓ(T)
)ℓ such that the hypothesis

hA
′

φ ′,w̄ ′ is consistent with T .

The proof is similar to the proof of the analogous statement in [55]
for the special case of FO as well as the proof of Lemma 4.6, but it relies
on Property 6.1. The main ingredient for the proof is the following
variant of the Local Composition Lemma (Lemma 2.16) for the r-local
formulas from Φ ′ on weighted structures.

Lemma 6.4. For numbers k ′, ℓ ′ ∈N, let v̄1, v̄2 ∈
(
U(A)

)k ′
and w̄1, w̄2 ∈(

U(A)
)ℓ ′ be tuples with distA

′
(v̄1, w̄1) > 2r+1, distA

′
(v̄2, w̄2) > 2r+1,

tpA ′

Φ ′(v̄1) = tpA ′

Φ ′(v̄2), and tpA ′

Φ ′(w̄1) = tpA ′

Φ ′(w̄2). Then tpA ′

Φ ′(v̄1w̄1) =

tpA ′

Φ ′(v̄2w̄2).

Proof. Let φ(x̄, ȳ) ∈ tpA ′

Φ ′(v̄1w̄1). Then, with Property 6.1 (2), φ has
a Feferman-Vaught decomposition ∆ in Φ ′ w.r.t. (x̄; ȳ), and thus,

92 learning logics with weight aggregation

NA ′
r (v̄1)⊕NA ′

r (w̄1) |= φ[v̄1, w̄1] if and only if there exists (α,β) ∈ ∆
such that NA ′

r (v̄1) |= α[v̄1] and NA ′
r (w̄1) |= β[w̄1]. Since A ′ |= φ[v̄1, w̄1]

and φ, α, β are r-local, it follows that A ′ |= α[v̄1] and A ′ |= β[w̄1].
Hence, α ∈ tpA ′

Φ ′(v̄1) = tpA ′

Φ ′(v̄2) and β ∈ tpA ′

Φ ′(w̄1) = tpA ′

Φ ′(w̄2). We
obtain A ′ |=

∨
(α,β)∈∆ α[v̄2]∧β[w̄2] and thus A ′ |= φ[v̄2, w̄2].

We are now ready to prove Lemma 6.3.

Proof of Lemma 6.3. Let T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
. Furthermore, let

φ(x̄, ȳ) ∈ Φ ′ and w̄ = (w1, . . . ,wℓ) ∈
(
U(A)

)ℓ be such that the hy-
pothesis hA

′
φ,w̄ ∈ HΦ ′,k,ℓ(A

′) is consistent with T . Analogously to the
proof of Lemma 4.6, we iteratively select vertices w(i) from the para-
meters w1, . . . ,wℓ that have distance at most 2r+ 1 from the examples
or the already selected vertices. This process is repeated for s steps
until all remaining parameters are too far away (or all parameters have
already been selected). For the tuple w̄ ′ that we are looking for in this
proof, we use these selected parameters and omit the others.

Formally, to select the parameters, we start with the neighbour-
hood N(0) := NA ′

2r+1(T) of radius 2r + 1 around the examples and
select a vertex w ∈ {w1, . . . ,wℓ} ∩N(0). If there is no such vertex,
we set s := 0 and stop this process. Otherwise, we set w(1) := w,
N(1) := N(0) ∪NA ′

2r+1(w), and continue. For i ⩾ 2, we select a vertex
w ∈ {w1, . . . ,wℓ} \ {w(1), . . . ,w(i−1)} that is contained in the neigh-
bourhood N(i−1). If there is no such vertex, we set s := i − 1 and
stop. Otherwise, we set w(i) := w, N(i) := N(i−1) ∪NA ′

2r+1(w), and
continue. W.l.o.g. let w(i) = wi for i ∈ [s]. Let w̄in := (w1, . . . ,ws) and
w̄out := (ws+1, . . . ,wℓ).

Claim. Let i, j ∈ [m] such that tpA ′

Φ ′(v̄iw̄
in) = tpA ′

Φ ′(v̄jw̄
in). Then λi = λj.

Proof. From the construction, it follows that NA ′
2r+1(wp) ⊆ N(p) ⊆

N(s) for every p ∈ [s], wp ̸∈ N(s) for every p ∈ [s + 1, ℓ], and
NA ′
2r+1(v̄p) ⊆ N(0) ⊆ N(s) for every p ∈ [m]. Hence, for every p ∈ [m],

we obtain distA
′
(w̄out, v̄pw̄in) > 2r+1. With Lemma 6.4, it follows that

tpA ′

Φ ′(v̄iw̄) = tpA ′

Φ ′(v̄iw̄
inw̄out) = tpA ′

Φ ′(v̄jw̄
inw̄out) = tpA ′

Φ ′(v̄jw̄). Thus,
in particular, φ ∈ tpA ′

Φ ′(v̄iw̄) ⇐⇒ φ ∈ tpA ′

Φ ′(v̄jv̄). Since hA
′

φ,w̄ is
consistent with T , this implies that λi = λj. ⌟

We let ȳin := (y1, . . . ,ys) and choose

φin(x̄, ȳin) :=
∨

i∈[m],λi=1

ψi(x̄, ȳin)

for

ψi(x̄, ȳin) :=
∧

γ(x̄,ȳin)∈ tpA ′
Φ ′(v̄iw̄

in)

γ(x̄, ȳin).

The formula φin is a Boolean combination of formulas in Φ ′ and thus,
according to Property 6.1, there is a formula φ ′ ∈ Φ ′ that is equivalent

6.2 consistent learning 93

Require: local access to background structure A ′,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA ′

(2r+1)ℓ(T)

2: for all w̄ ′ ∈ Nℓ do
3: for all φ ′ ∈ Φ ′ do
4: consistent← true
5: for all i ∈ [m] do
6: N← NA ′

r (v̄iw̄
′)

7: if Jφ ′(v̄i, w̄ ′)KN ̸= λi then
8: consistent← false
9: if consistent then

10: return (φ ′, w̄ ′)

11: reject

Figure 6.1: Learning algorithm for Theorem 6.2

to φin. The free variables of φ ′ are among x̄ and ȳin, and since ȳin is a
prefix of ȳ, we can safely write φ ′(x̄, ȳ).

We turn w̄in = (w̄1, . . . , w̄s) into a tuple w̄ ′ ∈
(
NA

(2r+1)ℓ(T)
)ℓ by

choosing an arbitrary w ∈ NA
(2r+1)ℓ(T) and filling the missing (ℓ− s)

positions with the vertex w.
By the choice of φin, the following is true for all j ∈ [m]. If A ′ |=

φ ′[v̄j, w̄in], then there exists a positive example v̄i with A ′ |= ψj[v̄i, w̄in].
Thus tpA ′

Φ ′(v̄iw̄
in) = tpA ′

Φ ′(v̄jw̄
in) for some positive example v̄i; with the

claim, we can conclude that λj = 1. On the other hand, if λj = 1, then
A ′ |= ψj[v̄j, w̄in] and hence A ′ |= φ ′[v̄j, w̄ ′]. Thus, hA

′

φ ′,w̄ ′ is consistent
with T .

Using Lemma 6.3, we can now prove Theorem 6.2, the main result
of this section.

Proof of Theorem 6.2. We show that the algorithm depicted in Figure 6.1
fulfils the requirements given in Theorem 6.2. The algorithm goes
through all tuples w̄ ′ ∈

(
NA ′

(2r+1)ℓ(T)
)ℓ and all formulas φ ′(x̄, ȳ) ∈ Φ ′.

A hypothesis hA
′

φ ′,w̄ ′ is consistent with the training sequence T if and

only if Jφ ′(v̄i, w̄ ′)KA
′
= λi for all i ∈ [m]. Since Φ ′ only contains

r-local formulas, this holds if and only if Jφ ′(v̄i, w̄ ′)KN
A ′
r (v̄iw̄

′) = λi
for every i ∈ [m]. Hence, the algorithm only returns a hypothesis
if it is consistent. Furthermore, if there is a consistent hypothesis in
HΦ,k,ℓ(A), then by Property 6.1 (1), there is also a consistent hypothesis
in HΦ ′,k,ℓ(A

′), and Lemma 6.3 ensures that the algorithm then returns
a hypothesis.

It remains to show that the algorithm satisfies the running-time
requirements while only using local access to the structure A ′. For all

94 learning logics with weight aggregation

v̄ ∈
(
U(A)

)k and w̄ ′ ∈
(
U(A)

)ℓ, based on the proof of Lemma 4.7, we
can bound the size of their neighbourhood by∣∣∣NA ′

r (v̄w̄ ′)
∣∣∣ ⩽ (k+ ℓ) ·

r∑
i=0

di ⩽ (k+ ℓ) · (1+ dr+1).

Therefore, the representation size of the substructure NA ′
r (v̄w̄ ′) is in

O
(
(k+ ℓ) · dr+1 · logn

)
. Thus, the consistency check in lines 4–8 runs

in time fΦ ′(A ′) ·m · O
(
(k + ℓ) · dr+1 · logn

)
under the logarithmic-

cost measure and in time fΦ ′(A ′) ·m · O
(
(k + ℓ) · dr+1

)
under the

uniform-cost measure. Let N = NA ′

(2r+1)ℓ(T). The algorithm checks up

to |N|
ℓ · |Φ ′| ∈ O

((
m · k · d(2r+1)ℓ+1

)ℓ · |Φ ′|
)

hypotheses.
All in all, since k, ℓ, r are considered constant, the running time of

the algorithm is in fΦ ′(A ′) · (logn+d+m)O(1) under the logarithmic-
cost measure and in fΦ ′(A ′) · (d +m)O(1) under the uniform-cost
measure. Furthermore, the algorithm only uses local access to the
structure A ′.

6.3 agnostic pac learning

Apart from consistent learning with precomputation, we also study
agnostic PAC learnability.

Learn-PAC-Precomp(k,Φ,Φ ′)

Input: structure A ′ (computed from the input structure A with
U(A ′) = U(A)), rational numbers ε, δ > 0, probability
distribution D on

(
U(A)

)k × {0, 1}

Problem: Return a formula φ ′ ∈ Φ ′ and a tuple w̄ ′ ∈
(
U(A)

)ℓ such
that, with probability of at least 1− δ over the choice of
examples drawn i.i.d. from D, it holds that

errD
(
hA

′

φ ′,w̄ ′
)
⩽ ε∗ + ε,

where

ε∗ := min
φ∈Φ,

w̄∈(U(A))ℓ

errD
(
hAφ,w̄

)
.

The following theorem provides an agnostic PAC-learning algorithm.

Theorem 6.5 (Agnostic PAC learning with precomputation). There is
an algorithm that solves Learn-PAC-Precomp(k,Φ,Φ ′) with local access
to a structure A ′ that is associated with the input structure A in time
fΦ∗(A∗) ·

(
logn+ d+ 1

ε + log 1δ
)O(1) under both the logarithmic-cost and

the uniform-cost measure, where A, A ′, Φ, and Φ ′ are as described in
Property 6.1, n and d are the size and the degree of A ′, and fΦ ′(A ′) is an

6.3 agnostic pac learning 95

Require: local access to background structure A ′,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N← NA ′

(2r+1)ℓ(T)

2: errmin ← |T |+ 1

3: for all w̄ ′ ∈ Nℓ do
4: for all φ ′ ∈ Φ ′ do
5: err← 0

6: for all i ∈ [m] do
7: N← NA ′

r (v̄iw̄
′)

8: if Jφ ′(v̄i, w̄ ′)KN ̸= λi then
9: err← err+ 1

10: if err < errmin then
11: errmin ← err

12: (φ ′
min, w̄ ′

min)← (φ ′, w̄ ′)

13: return (φ ′
min, w̄ ′

min)

Figure 6.2: ERM algorithm used in Theorem 6.5.

upper bound on the time complexity of model checking for formulas in Φ ′ on
A ′.

We prove this result in a similar fashion as the agnostic PAC-learning
result for first-order logic with counting on structures of bounded
degree.

Proof of Theorem 6.5. Let A be a (σ, W)-structure and let A ′ be the
associated (σ ′, W)-structure. We consider the concept class

H =
{
hAφ,w̄

∣∣ φ(x̄, ȳ) ∈ Φ, w̄ ∈
(
U(A)

)ℓ}
and the hypothesis class

H ′ =
{
hA

′

φ ′,w̄ ′
∣∣ φ ′(x̄, ȳ) ∈ Φ ′, w̄ ′ ∈

(
U(A)

)ℓ}.

Since, by Property 6.1, Φ ′ contains only finitely many formulas, the
number of hypotheses in H ′ is bounded by s · |A|ℓ for some constant s.
Furthermore, by Property 6.1 (1), it holds that H ⊆ H ′. Thus, we can
also bound the number of hypotheses in H by s · |A|ℓ. Our algorithm
that solves Learn-PAC-Precomp works as follows.

Given local access to a associated structure A ′, oracle access to
the size |A| = |A ′| of the structure, oracle access to a probability
distribution D on

(
U(A)

)k× {0, 1}, and given rational numbers ε, δ > 0,
our algorithm queries

m(|A| , ε, δ) :=

⌈
2 log(2s · |A|ℓ /δ)

ε2

⌉

many examples from D. Then, it runs the ERM algorithm depicted in
Figure 6.2 on the resulting training sequence.

96 learning logics with weight aggregation

Next, we show that this algorithm indeed solves the problem
Learn-PAC-Precomp. Let D be a distribution over

(
U(A)

)k × {0, 1}
and let h ∈ H be a hypothesis that minimises the generalisation error,
that is, errD(h) = minh ′′∈H errD(h ′′). Let T be the training sequence
of length m(|A| , ε, δ) drawn i.i.d. from D by our algorithm, and let
h ′ ∈ H ′ be the hypothesis returned by the ERM algorithm on input T .
Analogously to the ERM algorithm for first-order logic with counting
(Theorem 4.9), the returned hypothesis h ′ fulfils errT (h ′) ⩽ errT (h),
since the ERM algorithm returns a hypothesis from H ′ that minimises
the training error and h ∈ H ⊆ H ′.

Furthermore, by the Uniform Convergence Lemma (Lemma 3.9),
with probability at least 1− δ, it holds that

∣∣ errT (h ′′) − errD(h ′′)
∣∣ ⩽ ε

2

for all h ′′ ∈ H ′. This especially holds for h ′ as well as for h. Hence,

errD(h ′) ⩽ errT (h ′) +
ε

2
⩽ errT (h) +

ε

2
⩽ errD(h) +

ε

2
+
ε

2

with probability at least 1− δ. This is exactly the requirement we have
in Learn-PAC-Precomp for the returned hypothesis.

The number m(|A| , ε, δ) of queried examples can be bounded by
O
(

log(|A|/δ)

ε2

)
. Thus, based on the running-time analysis in the proof

of Theorem 6.2, we can bound the running time of our algorithm by(
log |A|+ d+ log 1δ +

1
ε

)O(1)
under the logarithmic-cost as well as the

uniform-cost measure.

6.4 learning fowa1

In this section, we combine the learning results of Sections 6.2 and 6.3
with the locality results of Chapter 5 to provide learning results for
the logic FOWA1. Before we do so, we first revisit the case of plain
first-order logic within our framework.

Remark 6.6. Fix a quantifier rank q ∈ N as well as k, ℓ ∈ N and a
signature σ. Let Φ =

{
φ(x̄, ȳ) ∈ FO[σ,q]

∣∣ |x̄| = k, |ȳ| = ℓ
}

. By the well-
known properties of first-order logic (i. e., the existence of Feferman-
Vaught decompositions as well as the locality properties we described
in Section 2.4), the set Φ has Property 6.1, e. g. via L′ := L = FO,
σ ′ := σ, and A ′ := A. This is exactly the setting considered by Grohe
and Ritzert [55] that we described in Chapter 3. Using the framework
described in Section 6.1 (and skipping the precomputation step since
A ′ = A), the results from Chapter 3 follow from Theorem 6.2 and
Theorem 6.5.

Next, we establish the crucial link between the learning results
of this chapter and the locality results of Chapter 5. For that, we
show that suitably chosen sets Φ ⊆ FOWA1(P)[σ, S, W] indeed have
Property 6.1. By using the locality properties of FOW1 and FOWA1, we
can apply a similar reasoning to FOWA1(P)[σ, S, W] as to FO[σ]. Fix
numbers k, ℓ,q ∈N and a signature σ. Let the collections P and S be

6.4 learning fowa1 97

finite (but S may contain some infinite rings or abelian groups), and
fix a finite set S of elements s ∈ S ∈ S.

Let Φ := Φq,k+ℓ,S be the set of all FOWA1(P)[σ, S, W]-formulas φ
of quantifier rank and aggregation depth at most q and with free
variables among {x1, . . . , xk,y1, . . . ,yℓ} that have the following addi-
tional property; all symbols s ∈ S for some S ∈ S that are present in φ
belong to S, all W-products present in φ have length at most q, and
the maximum nesting depth of term constructions using rule (9) from
Definition 5.3 in order to construct terms present in φ is at most q.

Lemma 6.7. Φ = Φq,k+ℓ,S has Property 6.1.

Proof. In the following, we describe a procedure to compute a sig-
nature σ ′, a finite set of formulas Φ ′ ⊆ FOW1(P)[σ ′, S, W], and, for
every (σ, W)-structure A, a (σ ′, W)-structure A ′ that witness that Φ
has Property 6.1.

Claim 1. Up to logical equivalence, Φ only contains a finite number of
formulas.

Proof. Let a := maxw∈W ar(w). The maximum nesting depth of con-
structs using rules (4) and (5) as well as the maximum nesting depth
of constructs using rule (10) from Definition 5.3 is bounded by q
and every construct using rule (4) adds one new variable, rule (5)
adds at most a new variables, and rule (10) adds at most a · q new
variables. Thus, every subformula of a formula in Φ has at most
k+ ℓ+ a · q+ a · q2 free variables. With finitely many free variables
and σ, S, and W being finite as well, rules (1) and (2) only produce a
finite number of formulas. With the same argument, rules (7) and (8)
only produce a finite number of S-terms. We show by induction on
the nesting depth of constructs using rules (4), (5), and (10) that there
are, up to logical equivalence, only finitely many (sub-)formulas and
S-terms used in Φ, which implies the claim.

If there are only finitely many S-terms, then, with a bounded nesting
depth, rule (9) only yields a finite number of new S-terms. Thus, since
P is also finite, rule (6) only produces a finite number of formulas of
the form P(t1, . . . , tm). Hence, rule (3) only creates a finite number of
formulas up to logical equivalence. (Consider them being in a normal
form analogous to CNF.)

Applying rule (4) or rule (5) to a set of finitely many formulas only
creates finitely many new formulas. Then, rule (10) only yields finitely
many S-terms. This completes the proof of Claim 1. ⌟

For each of these finitely many formulas φ ∈ Φ, we apply The-
orem 5.13 to obtain an extension σφ of σ, a σφ-expansion Aφ of A,
and a local FOW1(P)[σφ, S, W]-formula φ∗. Then, we let σ∗ be the
union of all the σφ, we let A∗ be the σ∗-expansion of A whose σφ-
reduct coincides with Aφ for every φ, and we let Φ∗ be the set of

98 learning logics with weight aggregation

all the formulas φ∗. Choose a number r ∈ N such that each of the
φ∗ ∈ Φ∗ is r-local.

We can repeatedly apply Theorem 5.8 for every partition of the
free variables, take the r-localisations α(r),β(r) of the resulting for-
mulas α,β, and take Boolean combinations to obtain an extension
Φ ′ of Φ∗ such that Φ ′ satisfies statements (2) and (3) of Property 6.1
and contains only r-local formulas. We stop the process once, up to
equivalence, no new formulas have been added.

Claim 2. The process stops after finitely many steps. Thus, we obtain a
finite extension Φ ′.

Proof. Let Φ(0) = Φ∗,Φ(1),Φ(2), . . . be sets of formulas, where Φ(i+1)

is computed from Φ(i) by applying Theorem 5.8 for every partition
of the free variables and taking the r-localisations α(r),β(r) of the
resulting formulas α,β. This is the above described procedure without
adding all Boolean combinations. When applying Theorem 5.8 to
a formula φ ∈ Φ(i) w.r.t. a partition of the free variables (z̄1; z̄2),
the Feferman-Vaught decomposition only contains new formulas not
already contained in Φ(i) if the partition is not trivial, that is, if neither
z̄1 nor z̄2 contain all free variables of φ. Thus, the application of
Theorem 5.8 can only produce new formulas not equivalent to one of
the already computed ones if the new formula has less free variables
than the original formula. Hence, if one only applies Theorem 5.8 and
takes the r-localisations of the resulting formulas, then one can stop
the process after finitely many, say m, steps.

Recall that, for two formulas φ1,φ2 ∈ FOW1(P)[σ∗, S, W] and for
the Feferman-Vaught decompositions ∆φ1 , ∆φ2 , ∆φ1∨φ2 , and ∆¬φ1 of
φ1, φ2, φ1 ∨φ2, and ¬φ1 w.r.t. z̄1, z̄2, we have ∆φ1∨φ2 = ∆φ1 ∪∆φ2
and, for ∆φ1 =

{
(α1,β1), . . . , (αs,β2)

}
, we have ∆¬φ1 =

{
(αA,βA)

∣∣
A ⊆ [s]

}
with αA =

∧
i∈A ¬αi and βA =

∧
i∈[s]\A ¬βi. Thus, for any

of the sets Φ(i), the Feferman-Vaught decompositions of Boolean com-
binations of formulas from Φ(i) only contain Boolean combinations
of the formulas that occur in the Feferman-Vaught decompositions of
Φ(i). This shows that it suffices to compute the Boolean combinations
only in the last iteration of our procedure.

Hence, the result of the overall process is the set of Boolean combin-
ations of formulas in Φ(m). Since the set of Boolean combinations of
finitely many formulas is, up to logical equivalence, again finite, the
process stops after finitely many steps with a finite extension Φ ′. This
completes the proof of Claim 2. ⌟

Let A ′ := A∗ and σ ′ := σ∗. ThenΦ ′ witnesses thatΦ has Property 6.1.

For the remainder of this section, let Φ = Φq,k+ℓ,S, let σ ′, Φ ′ be as
described in the proof of Lemma 6.7, and, for every (σ, W)-structure
A, let A ′ be the (σ ′, W)-structure described in the proof of Lemma 6.7.

6.4 learning fowa1 99

By Theorem 5.13, A ′ can be computed from A in time |A| log |A| ·dO(1)

under the logarithmic-cost measure and in time |A| · dO(1) under the
uniform-cost measure, where d is the degree of A. Since Φ ′ witnesses
that Φ has Property 6.1, the formulas in Φ ′ are r-local for a fixed
number r. This implies that the model-checking problem for formulas
in Φ ′ can be solved in time polynomial in the degree of the structure.
Combining this with Theorems 6.2 and 6.5 yields the following learn-
ability result for FOWA1, where we assume all mentioned algorithms
to have P- and S-oracles, so that operations +S, ·S for S ∈ S and
checking if a tuple is in JPK for P ∈ P takes time O(1).

Theorem 6.8. For an input structure A and an input training sequence T ,
let n and d denote the size and the degree of A and let m denote the number
of training examples in T .

(1) There is an algorithm that solves the consistent-learning with precom-
putation problem Learn-Consistent-Precomp(k,Φ,Φ ′) with local
access to a structure A ′ that is associated with the input structure A in
time

(
logn+ d+m

)O(1) under the logarithmic-cost measure and in
time

(
d+m

)O(1) under the uniform-cost measure.

(2) There is an algorithm that solves the PAC-learning with precompu-
tation problem Learn-PAC-Precomp(k,Φ,Φ ′) with local access to
a structure A ′ that is associated with the input structure A in time(
logn+ d+ 1

ε + log 1δ
)O(1) under both the logarithmic-cost and the

uniform-cost measure.

Additionally, the algorithms can be chosen such that the returned hypotheses
can be evaluated in time (logn+ d)O(1) under the logarithmic-cost measure
and in time dO(1) under the uniform-cost measure. Moreover, the precom-
putation step for both algorithms runs in time |A| log |A| · dO(1) under the
logarithmic-cost measure and in time |A| · dO(1) under the uniform-cost
measure.

On classes of structures of polylogarithmic degree, Theorem 6.8
implies that consistent learning and PAC learning are possible in
sublinear time.

Corollary 6.9. Let C be a class of structures of polylogarithmic degree.

(1) There is an algorithm that solves the consistent-learning with precomputa-
tion problem Learn-Consistent-Precomp(k,Φ,Φ ′) on C with local
access in time sublinear in the size of the background structure and poly-
nomial in the length of the training sequence, under the logarithmic-cost
as well as the uniform-cost measure.

(2) There is an algorithm that solves the PAC-learning with precomputation
problem Learn-PAC-Precomp(k,Φ,Φ ′) with local access in time sub-
linear in the size of the background structure under the logarithmic-cost
as well as the uniform-cost measure.

100 learning logics with weight aggregation

The hypotheses returned by the algorithms can be evaluated in sublinear time
and the precomputation step for both algorithms runs in pseudo-linear time,
measured in the size of the background structure under both the logarithmic-
cost and the uniform-cost measure.

We conclude with an example that illustrates an application scenario
for Theorem 6.8.

Example 6.10. Recall the (σ, W)-structure A for the online marketplace
from Examples 5.1, 5.2, and 5.6. Retailers can pay the marketplace to
advertise their products to consumers. Since the marketplace demands
a fee for every single view of the advertisement, retailers want the
marketplace to only show the advertisement to those consumers that
are likely to buy the product. One possible way to choose suitable
consumers is to consider only those who buy a variety of products
from the same or a similar product group as the advertised product
and who are thus more likely to try new products that are similar to
the advertised one. At the same time, the money spent by the chosen
consumers on the product group should be above average.

In Example 5.6, we have already seen a formula φspending(c) that
defines consumers who have spent at least as much as the average
consumer on the product group. The formula depends on a formula
φgroup(p) that defines a certain group of products based on the struc-
ture of their transactions. Due to the connection between graph neural
networks and the Weisfeiler-Leman algorithm described in [75], we
may assume that there is a formula in first-order logic that at least
roughly approximates such a product group. Likewise, we might
assume that there is a formula φvariety(c) in first-order logic that
defines consumers with a wide variety of products bought from a
specific product group. However, it is a non-trivial task to design
such formulas by hand. It is even not clear whether there exist better
rules for finding suitable consumers. Meanwhile, we can easily show
the advertisement to consumers and then check whether they buy
the product. Thus, we can generate a list with positive and negat-
ive examples of consumers. Since the proposed rule can be defined
in FOWA1(P)[σ, S, W] as φadvertise(c) := (φvariety(c)∧φspending(c)), we
can use one of the learning algorithms from Theorem 6.8 to find
good definitions for φvariety(c) and φgroup(p) or to learn an even better
definition for φadvertise(c) in FOWA1(P)[σ, S, W] from examples.

7
PA R A M E T E R I S E D C O M P L E X I T Y O F L E A R N I N G

As we have seen in the last chapters, to solve a PAC-learning problem,
we can combine an algorithm that performs Empirical Risk Minimisa-
tion with a sufficient upper bound on the number of examples needed
to guarantee the desired probability bounds. The learning algorithms
studied in the previous chapters use this technique and all run in
sublinear time on classes of structures of bounded or polylogarithmic
degree.

In the present chapter, we loosen the requirements we impose on
the classes of structures and look for classes with a tractable (i. e.,
polynomial-time-solvable) ERM problem. In the previous chapters,
we considered k, the length of the input tuples, and ℓ, the number
of parameters, as fixed. When looking for classes with a tractable
learning problem, this approach would not lead to significant results,
since, for example, going through all |A|ℓ many possible choices of
parameters would still be allowed in a polynomial-time algorithm. On
the other hand, compared to the size of the background structure, k
and ℓ are typically small, so considering them as part of the input and
requiring algorithms to run in time polynomial in k and ℓ also seems
to be too restrictive. Thus, we analyse the parameterised complexity of
learning problems and consider k and ℓ as parameters. Specifically, we
study the ERM problem for concepts definable in first-order logic, and
we look for classes with a fixed-parameter tractable ERM problem.

Inspired by the hypothesis classes HΦ,k,ℓ in Chapter 3, for a σ-
structure A and for k, ℓ,q ∈N, let

Hq,k,ℓ(A) :=
{
hAφ,w̄

∣∣φ(x̄, ȳ) ∈ FO[σ,q], |x̄| = k, |ȳ| = ℓ,

w̄ ∈
(
U(A)

)ℓ}.

Then, for functions L,Q : N3 → N which satisfy L(k, ℓ,q) ⩾ ℓ and
Q(k, ℓ,q) ⩾ q for all k, ℓ,q ∈ N, we consider the following paramet-
erised problem.

101

102 parameterised complexity of learning

p-FO-Learn-ERM(L,Q)

Input: σ-structure A, training sequence T ∈
((
U(A)

)k ×
{0, 1}

)m
, k, ℓ∗,q∗ ∈N, ε > 0

Parameter: k+ ℓ∗ + q∗ + 1
ε + |σ|

Problem: Return a formula φ(x̄, ȳ) ∈ FO[σ,q] for some q ⩽
Q(k, ℓ∗,q∗) with |x̄| = k and |ȳ| = ℓ ⩽ L(k, ℓ∗,q∗), and
return a tuple w̄ ∈

(
U(A)

)ℓ such that

errT
(
hAφ,w̄

)
⩽ ε∗ + ε,

where

ε∗ := min
{

errT
(
hAφ∗,w̄∗

) ∣∣ hAφ∗,w̄∗ ∈ Hq∗,k,ℓ∗(A)
}

.

In Section 7.1, we describe an fpt Turing reduction from the paramet-
erised model-checking problem p-FO-Mc to p-FO-Learn-ERM(L,Q).
Since, in general, the parameterised FO model-checking problem is
AW[∗]-hard, this implies that p-FO-Learn-ERM(L,Q), without any re-
strictions on the structures, is AW[∗]-hard as well (for all L, Q). Thus,
under common assumptions (cf. Section 2.5), the general paramet-
erised ERM problem is not fixed-parameter tractable.

In Section 7.2, we study first-order learning problems that are fixed-
parameter tractable. First, we consider a variant of the ERM problem
where the parameter ℓ∗ is considered as a constant. Second, we study
the parameterised consistent-learning problem for the 1-dimensional
case, that is, for k = 1. For both scenarios, we show that the learn-
ing problems are fixed-parameter tractable on classes of structures
that have a fixed-parameter tractable model-checking problem. More
precisely, in both scenarios, we give fpt Turing reductions from the re-
spective learning problems to the first-order model-checking problem.
After this, we come back to the problem p-FO-Learn-ERM(L,Q) and
look for restricted classes of structures with a tractable learning prob-
lem. Since the reduction in Section 7.1 from the FO model-checking
problem applies to all graph classes satisfying mild closure condi-
tions, we limit our search to sparse classes with a tractable model-
checking problem. Here, we consider the most general type of such
classes, namely nowhere dense classes. We prove that for every effect-
ively nowhere dense class C, there are functions L and Q such that
p-FO-Learn-ERM(L,Q) is fixed-parameter tractable on C.

Finally, in Section 7.3, we extend the result for the ERM problem on
nowhere dense classes to PAC learning.

The restrictions of the results of this chapter from arbitrary relational
structures to coloured graphs have been published in [12].

7.1 hardness of learning 103

7.1 hardness of learning

The main result of this section is the following.

Theorem 7.1. For all functions L,Q : N3 → N with L(k, ℓ,q) ⩾ ℓ and
Q(k, ℓ,q) ⩾ q for all k, ℓ,q ∈N, p-FO-Learn-ERM(L,Q) is hard for the
parameterised complexity class AW[∗] under fpt Turing reductions.

This theorem is a direct consequence of the following reduction.

Lemma 7.2. Let L,Q : N3 → N be functions with L(k, ℓ,q) ⩾ ℓ and
Q(k, ℓ,q) ⩾ q for all k, ℓ,q ∈N. Then, p-FO-Mc is fpt Turing-reducible to
p-FO-Learn-ERM(L,Q).

The overall idea of the reduction is to solve p-FO-Mc recursively by
decomposing the input formula. While handling negation and Boolean
connectives is easy, the crucial part of the computation is handling
quantification. In a naive approach, for a formula ∃xψ(x), one could
go through all possible assignments to x and then check whether the
remaining formula is satisfied in the given structure. This, however,
would not lead to an fpt algorithm.

For a formula ψ of quantifier rank q and vertices v and w of the
same q-type in the input structure, it does not matter whether we
assign v or w to x. Thus, our goal is to find a set of representatives for
the vertices in the structure such that the number of representatives
only depends on the formula ψ, and for every vertex we have a
representative of the same q-type. Recursively checking ψ for each of
the representatives then leads to an fpt algorithm that solves p-FO-Mc.

To find the set of representatives, we start with the set of all vertices.
Then, we iteratively remove vertices that are already represented by
other vertices in the set until the number of remaining representatives
is below a certain threshold that only depends on the input formula. In
this process, we use an oracle for the problem p-FO-Learn-ERM(L,Q)

on every pair (v,w) of vertices, where we give v as a positive and
w as a negative example. The oracle is then supposed to return a
formula of quantifier rank at most Q(k, ℓ,q) that distinguishes the
two vertices. Since there are, up to equivalence, only finitely many
of such formulas, the oracle has to return the same formula on some
inputs. Using Ramsey’s Theorem [18], we can show that for every
set of representatives of a certain size, there are triples of vertices v1,
v2, and v3 such that the oracle returns the same formula on input
(v1, v2), (v2, v3), and (v3, v1). Furthermore, we can show that for such
triples, the vertex v3 is already represented by v1 or v2, so we can
remove it from the set of representatives. By repeating this process,
we end up with a set of representatives whose size only depends on
the input formula and not on the input structure. For the full proof of
Lemma 7.2, we refer to [12].

104 parameterised complexity of learning

7.2 tractability of empirical risk minimisation

Before we study the complexity of p-FO-Learn-ERM on nowhere
dense classes, we consider two different learning problems that can
be solved using the first-order model-checking problem.

For a class of structures C, we say that C is closed under colour
expansions, if for every σ-structure A in C and every signature σ ′ ⊇ σ,
where all relation symbols in σ ′ \ σ are unary, all σ ′-expansions of A
are also contained in C.

For our first result, we consider the variant p-FO-Learn-ERM where
we view the parameter ℓ∗ as a constant.

Proposition 7.3. Let C be a class of structures that is closed under colour
expansions such that p-FO-Mc is fixed-parameter tractable on C. Then, for
every constant ℓ ∈N, the restriction of p-FO-Learn-ERM(L,Q) to inputs
with ℓ∗ = ℓ is fixed-parameter tractable on C as well (for all L and Q).

In case of a constant ℓ, a simple brute-force algorithm suffices to
solve the problem. Our task is to return a hypothesis that is at least
as good as the best hypothesis that uses ℓ parameters and a formula
of quantifier rank at most q. Thus, we can go through all possible
combinations of ℓ parameters and formulas of quantifier rank at most
q (up to equivalence) and check the resulting hypotheses using an
oracle to the model-checking problem. Since the number of formulas
to check is independent of the size of the structure and, for a constant
ℓ, the number |A|ℓ of parameter tuples to check is polynomial in the
size of the structure, all in all, the described brute-force algorithm is an
fpt algorithm. Although an algorithm solving p-FO-Learn-ERM(L,Q)

would be allowed to return up to L(k, ℓ,q) parameters and a formula
of quantifier rank at most Q(k, ℓ,q), we limit ourselves to ℓ parameters
and quantifier rank q. Hence, this result holds for all functions L and
Q (with L(k, ℓ,q) ⩾ ℓ and Q(k, ℓ,q) ⩾ q, as given in the definition of
the problem). Since the model-checking problem only allows to check
sentences, we encode the inputs of the formula using colours. This
is the reason why we require the class C to be closed under colour
expansions. A formal proof of this result can be found in [12].

For our second result, we consider the parameterised 1-dimensional
consistent-learning problem.

Proposition 7.4. Let C be a class of structures that is closed under colour
expansions such that p-FO-Mc is fixed-parameter tractable on C. Then, the
following learning problem is fixed-parameter tractable on C as well.

7.2 tractability of empirical risk minimisation 105

Input: σ-structure A, training sequence T ∈
((
U(A)

)k× {0, 1}
)m

,
ℓ,q ∈N

Parameter: ℓ+ q+ |σ|

Problem: Return a formula φ(x, ȳ) ∈ FO[σ,q] with |ȳ| = ℓ and
return a tuple w̄ ∈

(
U(A)

)ℓ such that the hypothesis hAφ,w̄
is consistent with T , or reject if there is no such hypothesis.

To solve this problem, we first encode the positive and negative
examples in the structure using fresh colours P+ and P−. To check
whether there is a consistent hypothesis, we can go through all non-
equivalent formulas φ ∈ FO[σ,q] and check whether the sentence

∃y1 . . . ∃yℓ∀x
((
P+x =⇒ φ(x,y1, . . . ,yℓ

)
∧

(
P−x =⇒ ¬φ(x,y1, . . . ,yℓ

))
holds in A. Once we have found a suitable formula, we can iteratively
search for the parameters w1 to wℓ. For that, in the ith iteration, we
can encode the already found parameters w1 to wi−1 as well as our
current choice for the parameter wi in the structure and hard code
this partial assignment in the above sentence. Then, using an oracle
for the model-checking problem, we can ask whether there are choices
for the remaining parameters such that the resulting hypothesis is
consistent. If there are such choices, we fix the current value for wi
and continue with the next parameter. Again, the formal proof can be
found in [12].

Now, we come to the main result of this section.

Theorem 7.5. For every effectively nowhere dense class C of structures,
there are functions L,Q : N3 → N such that p-FO-Learn-ERM(L,Q) is
fixed-parameter tractable on C.

The remainder of this section is devoted to the proof and the con-
sequences of this theorem. In the proofs we have seen before, we
typically go through all (finitely many) formulas and then look for
the right parameters for a suitable hypothesis. For the proof of The-
orem 7.5, we do it the other way round. That is, our goal is to find
a parameter tuple w̄ such that there is some formula φ so that the
hypothesis hAφ,w̄ is (almost) consistent. Once we have found the right
parameter tuple, we can go through all formulas, compute the training
error using a model-checking algorithm, and then return the hypo-
thesis that minimises this error.

To choose the right parameters, we first group the examples from
the training sequence by their local types. If vertices of a specific type
appear only as positive or only as negative examples, this type can be
hard coded as positive or negative in the final formula, without the

106 parameterised complexity of learning

use of any parameters. Thus, it suffices to consider only the remaining
(‘critical’) examples that cannot be classified by their local types alone.
In our algorithm, we identify the regions in the structure where most of
the critical examples are present. Since the problem p-FO-Learn-ERM
allows an additional error ε, we can ignore regions in the structure
with a very low density of critical examples. For the other regions,
our algorithm identifies the vertices that Splitter would choose in the
splitter game on the structure and use those vertices as parameters.
A formula can then use these parameters to follow the splitter game
and individualise almost all the critical examples such that they can
be correctly classified.

For the remainder of this section, let r : N → N be the function
from Fact 2.13 that gives us the bound on the locality radius r(q) for
formulas of quantifier rank at most q.

The following lemma helps us to limit the search space for the
parameters to the neighbourhood of a small set. The size of the set
depends on the additive error that we allow.

Lemma 7.6. Let σ be a relational signature, let A be a σ-structure, k, ℓ,q ∈
N, r := r(q), ε > 0, and let T ∈

((
U(A)

)k×{0, 1})m be a training
sequence. Then there exists a set X ⊆ U(A) of size |X| ⩽ kℓ/ε such that
the following holds. For all ε ′ ⩾ 0, if there is an ℓ-tuple w̄ ′ in A and an
FO-formula φ ′ with k+ ℓ free variables of quantifier rank at most q such
that errT (hAφ ′,w̄ ′) ⩽ ε ′, then there is also a tuple w̄ ∈

(
NA
4r+2(X)

)ℓ and an
FO-formula φ with k+ ℓ free variables of quantifier rank at most q such that
errT (hAφ,w̄) ⩽ ε

′ + ε.
Furthermore, for every class C of structures that is closed under colour ex-

pansions and that has a fixed-parameter tractable FO model-checking problem,
there is an fpt algorithm with parameter k+ ℓ+ q+ 1/ε+ |σ| that computes
X on input k, ℓ,q, ε,A, T for A ∈ C.

Proof. If the training examples are of length k = 0 or we have ℓ = 0,
that is, we do not use any parameters, then the statement is trivial.
Thus, let k, ℓ ∈ N⩾1. We call an example (v̄,γ) ∈ T critical if there is
another example (v̄ ′,γ ′) ∈ T with a different label γ ′ ̸= γ that has
the same local type ltpA

q,r(v̄
′) = ltpA

q,r(v̄). Let C be the subsequence
of T that contains exactly the critical examples. Because of Fact 2.13,
to distinguish two tuples v̄, v̄ ′ of the same local type by a formula
of quantifier rank at most q, we need to find parameters w̄ such that
ltpA
q,r(v̄w̄) ̸= ltpA

q,r(v̄
′w̄). Therefore, by the Local Composition Lemma

(Lemma 2.16), we know that we have to choose a parameter in the
(2r+ 1)-neighbourhood of one of the two tuples. To identify the critical
examples that are possibly affected when we choose a vertex w as a
parameter, let C(w) be the subsequence of C that contains all critical
examples that have distance at most 2r+ 1 from w in A.

To compute the set X, we iteratively find elements x1, . . . , xp ∈ U(A)
(in a greedy fashion) with disjoint (2r+ 1)-neighbourhoods such that

7.2 tractability of empirical risk minimisation 107

Figure 7.1: Construction of the set X in Lemma 7.6. Positive examples are
shown in purple and negative examples are shown in red. Non-
critical examples, i. e. those that can simply be classified by their
local type, are grayed out. The neighbourhoods of the chosen
vertices for the set X are shown as dashed circles. These contain
almost all critical examples. Thus, the error is only increased
slightly be restricting ourselves to parameters from these neigh-
bourhoods.

the chosen elements affect as many critical examples as possible. See
Figure 7.1 for an illustration. Formally, for every i ⩾ 1, we choose
xi ∈ U(A) such that dist(xi, xj) > 4r+ 2 for all already found xj with
j < i and, subject to this condition, |C(xi)| is maximum. If no such xi
exists, set p = i− 1 and stop the construction.

Note that for every entry v of a k-tuple v̄ in a critical example (v̄,γ),
there is at most one of the xi in the (2r+ 1)-neighbourhood of v. Since
v̄ contains at most k distinct elements, there are at most k of the xi
such that (v̄,γ) ∈ C(xi). Thus, we have that

∑p
i=1 |C(xi)| ⩽ k |C|. This

implies that there are at most kℓ/ε of the xi with |C(xi)| ⩾
ε
ℓ
|C|. Since

the xi are sorted by decreasing |C(xi)|, we have |C(xi)| <
ε
ℓ
|C| for all

i > kℓ/ε. We choose X = {x1, . . . , xmin{p,kℓ/ε}}. Then, by construction,
we have |C(u)| < ε

ℓ
|C| for all u ∈ U(A) \NA

4r+2(X).
To show that X satisfies the error bounds from the lemma, let w̄ ′ be

an ℓ-tuple in A and let φ ′ be an FO-formula with k+ ℓ free variables
of quantifier rank at most q such that errT (hAφ ′,w̄ ′) ⩽ ε ′. Without loss
of generality, let w̄ ′ = w̄inw̄out, where w̄in only contains entries from
NA
4r+2(X) and w̄out only contains entries that are not contained in

NA
4r+2(X). In the remainder of this proof, we show that the parameters

from w̄in suffice to distinguish enough examples from each other.

Claim 1. Let v̄, v̄ ′ ∈
(
U(A)

)k be such that ltpA
q,r(v̄w̄

in) = ltpA
q,r(v̄

′w̄in).
If ltpA

q,r(v̄w̄
′) ̸= ltpA

q,r(v̄
′w̄ ′), then v̄ ∈ C(w) or v̄ ′ ∈ C(w) for some

entry w of w̄out.

108 parameterised complexity of learning

Proof. Let v̄, v̄ ′ ∈
(
U(A)

)k with ltpA
q,r(v̄w̄

in) = ltpA
q,r(v̄

′w̄in). We prove
the claim by contraposition. Assume v̄, v̄ ′ ̸∈ C(w) for all entries
w of w̄out. Then, by the definition of C(w), dist(v̄, w̄out) > 2r + 1

and dist(v̄ ′, w̄out) > 2r + 1. Thus, by Lemma 2.16, it follows that
ltpA
q,r(v̄w̄

′) = ltpA
q,r(v̄w̄

inw̄out) = ltpA
q,r(v̄

′w̄inw̄out) = ltpA
q,r(v̄

′w̄ ′). ⌟

By Corollary 2.14, there is a set Φ ′ of (k+ ℓ)-variable q-types such
that, for every k-tuple v̄ from A, we have that A |= φ ′[v̄w̄ ′] if and
only if ltpA

q,r(v̄w̄
′) ∈ Φ ′. Next, we define a set Φin that is a projection

of the types in Φ ′ to (k+
∣∣w̄in

∣∣)-variable q-types. For every example
(v̄, λ) ∈ T , let Φin contain ltpA

q,r(v̄w̄
in) if and only if for at least half

of the examples (v̄ ′, λ ′) ∈ T with the same local type ltpA
q,r(v̄

′w̄in) =

ltpA
q,r(v̄w̄

in), we have that ltpA
q,r(v̄

′w̄ ′) ∈ Φ ′. Let ȳin := (y1, . . . ,y|w̄in|)

and

φin(x̄, ȳin) :=
∨

ltpA
q,r(v̄w̄

in)∈Φin

∧
ψ(x̄,ȳin)∈ltpA

q,r(v̄w̄
in)

ψ(x̄, ȳin).

Then, we let w̄ be an ℓ-tuple with wi = win
i for all i ⩽

∣∣w̄in
∣∣, and

we set wi = a for all other entries for some arbitrary element a in
NA
4r(q)+2(X). Furthermore, let φ(x̄, ȳ) := φin(x̄, ȳin).

Claim 2. It holds that errT (hAφ,w̄) ⩽ ε
′ + ε.

Proof. We show that there are at most ε ·m examples (v̄, λ) in T with
hAφ ′,w̄ ′(v̄) = λ and hAφ,w̄(v̄) ̸= λ. With this, the claim immediately
follows.

Let h := hAφ,w̄ and h ′ := hAφ ′,w̄ ′ . Due to the construction of Φin

and φ, for every example (v̄, λ) in T with h(v̄) ̸= h ′(v̄), there is
a distinct corresponding example (v̄ ′, λ ′) in T with the same local
type ltpA

q,r(v̄
′w̄in) = ltpA

q,r(v̄w̄
in) such that h(v̄ ′) = h ′(v̄ ′). Now let

(v̄, λ) ∈ T be such that h ′ correctly classifies v̄, i. e. h ′(v̄) = λ, and h
misclassifies v̄, i. e. h(v̄) ̸= λ. Let (v̄ ′, λ ′) be the distinct corresponding
example in T with ltpA

q,r(v̄
′w̄in) = ltpA

q,r(v̄w̄
in) and h(v̄ ′) = h ′(v̄ ′).

Because of the equality of the local types and the construction of h,
we have h(v̄) = h(v̄ ′). Thus, we can deduce that h ′(v̄) ̸= h ′(v̄ ′) and
ltpA
q,r(v̄

′w̄ ′) ̸= ltpA
q,r(v̄w̄

′). It follows from Claim 1 that v̄ ∈ C(w) or
v̄ ′ ∈ C(w) for some entry w of w̄out. Since∣∣∣∣∣ ⋃

w∈w̄out

C(w)

∣∣∣∣∣ ⩽
∑

w∈w̄out

|C(w)| < ℓ · ε
ℓ
|C| ⩽ ε ·m,

there are at most ε ·m examples (v̄, λ) in T with h ′(v̄) = λ and h(v̄) ̸=
λ. ⌟

It remains to show that the set X can be computed by an fpt al-
gorithm. Let C be a class of structures that is closed under colour ex-
pansions and that has a fixed-parameter tractable FO model-checking
problem. Furthermore, let A be a σ-structure from C. Up to equivalence,

7.2 tractability of empirical risk minimisation 109

there are only finitely many FO[σ,q]-formulas with k free variables.
Analogously to the proof of Proposition 7.3, by encoding the inputs
of the formulas using colours, we can use the model-checking result
on C to check for every formula and for every tuple from the training
examples whether the tuple satisfies the formula. Thus, for every tuple
from the training examples, we can compute the local type by an fpt al-
gorithm. Based on the local types, we can compute the sequence of all
critical examples, the sequences C(u) for all u ∈ U(A), and finally also
the set X, by an fpt algorithm with parameter k+ ℓ+ q+ 1/ε+ |σ|.

In the following, let C be an effectively nowhere dense class of
structures and let λ : N⩾1 →N⩾1 be a computable function such that
Splitter wins the λ-splitter game on C. In our proof, we consider the
splitter game with a larger radius

R(k, ℓ∗,q∗) := 4ℓ
∗−1 · (k+ 2)

(
2r(q∗) + 1

)
.

The specific choice of the radius is justified in the proof of Lemma 7.7.
Based on this radius, for our functions L and Q that bound the number
of parameters and the quantifier rank we may use, we choose

L(k, ℓ∗,q∗) :=
(
2λ

(
R(k, ℓ∗,q∗)

)
− 1

)
· ℓ∗

and

Q(k, ℓ∗,q∗) := q∗ + λ
(
R(k, ℓ∗,q∗)

)
· logR(k, ℓ∗,q∗).

The choice of L comes from the fact that we go through the splitter
game and choose 2ℓ∗ parameters in every round of the game, except for
the last round, where ℓ∗ parameters suffice. With the larger quantifier
rank Q(k, ℓ∗,q∗), we want to be able to work with neighbourhoods
of radius R(k, ℓ∗,q∗). The specific choice will also become clear in the
proof of Lemma 7.7.

Let A, T ,k, ℓ∗,q∗, ε be the input of p-FO-Learn-ERM(L,Q), where
A is a σ-structure from C, T is a training sequence of lengthm, we have
k, ℓ∗,q∗ ∈N, and ε > 0. With a slight abuse of notation, let r := r(q∗),
R := R(k, ℓ∗,q∗), and λ := λ(R). Furthermore, let ℓ := L(k, ℓ∗,q∗) =

(2λ− 1) · ℓ∗ and q := Q(k, ℓ∗,q∗) = q∗ + λ logR.
Let ε∗ ⩾ 0 be such that there is an FO-formula φ∗(x̄, ȳ) of quantifier

rank at most q∗ with k+ ℓ∗ free variables and a tuple w̄∗ ∈
(
U(A)

)ℓ∗
such that errT (hAφ∗,w̄∗) ⩽ ε∗. Our goal is to find an FO-formula φ(x̄, ȳ)
of quantifier rank at most q with k + ℓ free variables and a tuple
w̄ ∈

(
U(A)

)ℓ such that errT (hAφ,w̄) ⩽ ε
∗ + ε. Equivalently, this means

that the hypothesis hAφ,w̄ misclassifies at most m · (ε∗ + ε) examples
from T .

As indicated above, we first look for the right parameters. Hence,
our first goal is to find an ℓ-tuple w̄ such that there is a formula
φ of quantifier rank at most q with errT (hAφ,w̄) ⩽ ε∗ + ε. Once we

110 parameterised complexity of learning

have found such a tuple, we can simply go through all formulas of
quantifier rank at most q and use the fixed-parameter tractability of
the model-checking problem on nowhere dense classes to evaluate the
resulting hypothesis on the training sequence. We can then return the
hypothesis that minimises the training error. Thus, in the following,
we describe a procedure to find such a tuple.

Our algorithm runs λ many steps that correspond to the moves
in the splitter game. It computes structures A0, . . . ,Aλ and training
sequences T0, . . . , Tλ. We start with A0 := A and T0 := T . In each step,
while reducing the search space for parameters using Lemma 7.6, the
algorithm gives up on at most ελ ·m many examples, in addition to
those that the hypothesis hAφ∗,w̄∗ is unable to classify correctly. In the
last step, our algorithm will find a hypothesis that is at least as good
as hAφ∗,w̄∗ on the remaining examples that we have not given up on.
Thus, all in all, the hypothesis found by our algorithm will make at
most (ε∗ + ε) ·m errors on the training sequence.

Theorem 7.5 is a direct consequence of the following result.

Lemma 7.7. There are signatures σ0, . . . ,σλ, structures A0, . . . ,Aλ and
training sequences T0, . . . , Tλ with σ0 = σ, A0 = A, and T0 = T such that
the following holds.

(1) For all i ∈ [0, λ], the structure Ai is a σi-structure. Moreover, σi only
depends on σ, i, k, ℓ∗, and q∗. In particular, σi does not depend on A.

(2) For all i ∈ [0, λ], Splitter has a winning strategy for the (λ− i,R)-splitter
game on (the Gaifman graph of) Ai.

(3) For all i ∈ [0, λ− 1], there is an ℓ∗-tuple ūi in Ai and an FO[σi,q∗]-
formula ψi with k+ ℓ∗ free variables such that errTi

(
hAiψi,ūi

)
⩽ ε∗ +

i
λε.

(4) In Aλ, there is an FO[σλ,q∗]-formula ψλ with k free variables, i. e.
without any free parameter variables, such that errTλ

(
hAλψλ

)
⩽ ε∗ + ε.

(5) For all i ∈ [0, λ− 1], there is a
((
2(λ− i) − 1

)
ℓ∗
)

-tuple w̄i in Ai and

an FO[σi,q∗ + (λ− i− 1) · R]-formula φi with k+
(
2(λ− i) − 1

)
· ℓ∗

free variables such that errTi
(
hAiφi,w̄i

)
⩽ ε∗ + ε.

Furthermore, there is an fpt algorithm with parameter k+ ℓ∗+q∗+ 1/ε+
|σ| that computes A1, . . . ,Aλ, T1, . . . , Tλ, and suitable w̄λ−1, . . . , w̄0 and
φλ−1, . . . ,φ0 on input k, ℓ∗,q∗, ε,A, T for A ∈ C.

Before we prove this result, we first use it to prove our main result.

Proof of Theorem 7.5. In order to solve p-FO-Learn-ERM(L,Q), we use
Lemma 7.7 to compute the ℓ-tuple w̄0 and the FO[σ,q]-formula φ0
with k+ ℓ free variables such that errT

(
hAφ0,w̄0

)
⩽ ε∗ + ε. Then, we

7.2 tractability of empirical risk minimisation 111

can simply return φ := φ0 and w̄ := w̄0. By Item (5) of Lemma 7.7, this
hypothesis fulfils the requirements of p-FO-Learn-ERM(L,Q).

The remainder of this section is devoted to the proof of Lemma 7.7.
In the proof of the lemma, we use the following result that is inspired
by the so-called Vitali Covering Lemma [93].

Lemma 7.8. Let A be a structure, X ⊆ U(A), and r ⩾ 1. Then there is a set
Z ⊆ X and an R = 4pr for some p ∈ [0, |X|− 1] such that NA

r (X) ⊆ NA
R (Z)

and distA(z, z ′) > 2R+ 1 for all distinct z, z ′ ∈ Z.

Proof. Let Ri := 4ir for all i ⩾ 0. We inductively construct a sequence
Z0 ⊃ Z1 ⊃ · · · ⊃ Zp of subsets of X with NA

r (X) ⊆ NA
Ri
(Zi) for all i

such that Zp is the desired set Z.
Let Z0 := X. Now assume that Zi is already defined. If distA(z, z ′) >

2Ri + 1 for all distinct z, z ′ ∈ Zi, we set p := i and stop the con-
struction. Otherwise, let Zi+1 ⊃ Zi be inclusion-wise maximal such
that distA(z, z ′) > 2Ri + 1 for all distinct z, z ′ ∈ Zi+1. Then, for all
y ∈ Zi, there is a z ∈ Zi+1 such that distA(y, z) ⩽ 2Ri + 1 which im-
plies that NA

Ri
(y) ⊆ NA

3Ri+1
(z) ⊆ NA

Ri+1
(z). Thus, NA

r (X) ⊆ NA
Ri
(Zi) ⊆

NA
Ri+1

(Zi+1).
Since Zi+1 is a proper subset of Zi for all i, we have p ⩽ |X|− 1.

In addition to this result, we also use a modified version of the
(ℓ, r)-splitter game. In round i of this game, Connector not only picks
a vertex vi, but they also choose a new radius ri ⩽ r, and the game
continues in NGi−1ri (vi). Clearly, reducing the radius does not help
Connector. Thus, if Splitter has a winning strategy in the (ℓ, r)-splitter
game on a graph G, then they also have a winning strategy in the
modified (ℓ, r)-splitter game on G. We can now prove Lemma 7.7.

Proof of Lemma 7.7. At first, we describe how to construct the struc-
tures A0, . . . ,Aλ and the training sequences T0, . . . , Tλ.

Let A0 := A and T0 := T . Then Items (1)–(3) of Lemma 7.7 hold
for i = 0. We now describe the ith step of the algorithm for i ∈ [λ].
Assume that the σi−1-structure Ai−1 and the training sequence Ti−1
have already been computed. Furthermore, assume that Item (3) of
Lemma 7.7 holds for i− 1, i. e., assume that there is an ℓ∗-tuple ūi−1
in Ai−1 and an FO[σi−1,q∗]-formula ψi−1 with k+ ℓ∗ free variables
such that errTi−1

(
h
Ai−1
ψi−1,ūi−1

)
⩽ ε∗ + i−1

λ ε.
We use Lemma 7.6 to compute a set Xi of size |Xi| ⩽ kℓ∗λ/ε such that

there is an ℓ∗-tuple ū ′
i−1 in N

Ai−1
4r+2(Xi) and an FO[σi−1,q∗]-formula

ψ ′
i−1 with k+ ℓ∗ free variables such that errTi−1

(
h
Ai−1
ψ ′
i−1,ū ′

i−1

)
⩽ ε∗+ i

λε.
Since the tuple ū ′

i−1 has arity ℓ∗, there is a subset Yi of Xi of size
ℓi := |Yi| ⩽ ℓ∗ such that ū ′

i−1 is also contained in N
Ai−1
4r+2(Yi). To find

the right set Yi = {yi,1, . . . ,yi,ℓi}, we try all possible choices. This adds
a multiplicative cost of |Xi|

ℓ∗ ⩽
(
kℓ∗λ
ε

)ℓ∗
in every step of the algorithm,

112 parameterised complexity of learning

so all in all we check
(
kℓ∗λ
ε

)λℓ∗
different combinations of vertices for

the Yi, which is allowed in an fpt algorithm. In the end, we choose the
combination that minimises the error of the found hypothesis.

Next, we apply Lemma 7.8 and obtain a set Zi ⊆ Yi and a ra-
dius Ri = 4j(k+ 2)(2r+ 1) for some j ⩽ |Yi|− 1 ⩽ ℓ∗ − 1 such that
N

Ai−1
(k+2)(2r+1)(Yi) ⊆ N

Ai−1
Ri

(Zi) and distAi−1(z, z ′) > 2Ri + 1 for all dis-
tinct z, z ′ ∈ Zi. Note that Ri ⩽ R, where R is the radius from the
(λ,R)-splitter game described above. Suppose that Zi = {zi,1, . . . , zi,ℓ ′i}
for some ℓ ′i ⩽ ℓi ⩽ ℓ∗. For every j ∈ [ℓ ′i], let wi,j be Splitter’s answer
if Connector picks zi,j together with the radius Ri in the modified
(λ− i,Ri)-splitter game on Ai−1. We set w̄i := (wi,1, . . . ,wi,ℓ∗) with
wi,j = wi,ℓ ′i for all j > ℓ ′i.

Now, we can describe the construction of Ai. We start with the
induced Ri-neighbourhood structure A ′

i := N
Ai−1
Ri

(Zi). Then, we obtain
the next structure Ai by the following four steps.

1. Expand the structure by fresh colours Di,j,d for j ∈ [ℓi] and
d ∈ {0, . . . , (k + 2)(2r + 1)}. We let Di,j,d(Ai) be the set of all
vertices v such that distAi−1(v,yj) = d.

2. Expand the structure by fresh relation symbols Si,I for all relation
symbols S ∈ σi−1 and sets of indices I ⊆ [ar(S)]. For every tuple
ā = (a1, . . . ,aar(S)) ∈ S(Ai−1) where, for all indices p ∈ I, the
entry ap is equal to one of the verticeswi,j, we let the relation Si,I
contain the restriction ā|[ar(S)]\I of ā that contains only indices
not contained in I, so we leave out all entries ap with p ∈ I.
These relations are used to remember the connections of the
vertices wi,j to the rest of the structure. This allows us to remove
those connections in the next step.

3. For every relation symbol S, delete all tuples from the relation
that contain at least one of the vertices wi,j. Moreover, we add
fresh colours Bi,j for j ∈ [ℓ ′i] and set Bi,j(Ai) := {wi,j}.

4. For each non-empty set I ⊆ [k] and each |I|-variable q∗-type
θ ∈ Tp[σi−1, |I| ,q∗], add an isolated vertex ti,I,θ and a fresh
colour Ai,I,θ with Ai,I,θ(Ai) = {ti,I,θ}. These isolated vertices are
used in the construction of the training sequence Ti to replace
vertices that are not contained in Ai any more (since they lie
outside of the Ri-neighbourhood structure A ′

i).

Before we continue with the construction of Ti, we can already prove
Items (1) and (2) of Lemma 7.7. Item (1) of Lemma 7.7 follows directly
from the construction of Ai. Next, we consider Item (2).

Claim 1. For all i ∈ [0, λ], Splitter has a winning strategy for the
(λ− i,R)-splitter game on (the Gaifman graph of) Ai.

Proof. As described above, the claim holds for i = 0 by assumption.
Now let i > 0. Structurally, Ai consists of neighbourhoods Ni,j :=

7.2 tractability of empirical risk minimisation 113

N
Ai−1
Ri

(zi,j) \ {wi,j} for j ∈ [ℓ ′i] and isolated vertices wi,1, . . . ,wi,ℓ ′i and
ti,I,θ for I and θ as described above. By the construction of Zi, the
neighbourhoods Ni,j and Ni,j ′ are disconnected for all j ̸= j ′. Further-
more, the Gaifman graph of Ai, restricted to NAi−1

Ri
(Zi), is a subgraph

of the Gaifman graph of Ai−1.
Thus, Splitter’s winning strategy on Ai−1 is still valid for Ai, but

one of the steps of the (modified) splitter game, i. e., removing a
vertex Splitter chose and continuing in the neighbourhood of a ver-
tex Connector chose, has already been performed in each of the
neighbourhoods Ni,j. Thus, if Splitter has a winning strategy for
the (λ− (i− 1),R)-splitter game on Ai−1, then Splitter has a winning
strategy for the (λ− i,R)-splitter game in each of the neighbourhoods
Ni,j and hence also on Ai. Since Splitter has a winning strategy for
the (λ,R)-splitter game on A, the claim follows by induction. ⌟

Now we describe the construction of the intermediate training
sequence Ti. For every example (v̄,γ) ∈ Ti−1 with v̄ = (v1, . . . , vk) ∈(
U(Ai−1)

)k, we define a tuple v̄ ′ = (v ′1, . . . , v ′k) ∈
(
U(Ai)

)k, which is
a projection of v̄ into Ai, and add (v̄ ′,γ) to Ti. For that, we consider the
graph Hv̄ with vertex set V(Hv̄) = [k] and edges (a,b) for all a,b ∈ [k]

such that 1 ⩽ distAi−1(va, vb) ⩽ 2r+ 1. Let I1, . . . , Ip be the vertex sets
of the connected components of Hv̄. Using parameters fromN

Ai−1
4r+2(Yi),

we can only handle conflicting examples if they have at least one
element in NAi−1

6r+3(Yi). Hence, for each component Ij, we proceed as
follows. If there is some j0 ∈ Ij such that vj0 ∈ N

Ai−1
6r+3(Yi), we let v ′a :=

va for all a ∈ Ij. Note that we have distAi−1(va, vj0) ⩽ (k− 1)(2r+ 1)

for all a ∈ Ij and hence, distAi−1(va, Yi) ⩽ 6r+ 3+ (k− 1)(2r+ 1) =

(k+ 2)(2r+ 1). Thus, v ′a ∈ N
Ai−1
(k+2)(2r+1)(Yi) ⊆ N

Ai−1
Ri

(Zi) ⊆ U(Ai).
This is the point that determines the choice of the larger radius R of
the splitter game we introduced earlier. Otherwise, if va ̸∈ NAi−1

6r+3(Yi)

for all a ∈ Ij, we consider the restriction v̄|Ij of v̄ to the indices in Ij,
and we let θ := ltpAi−1

q∗,r∗(v̄|Ij). Then, we set v ′a := ti,Ij,θ for all a ∈ Ij.
Note that for two examples (v̄ ′1, λ1), (v̄ ′2, λ2) that appear in Ti, the
tuples v̄ ′1, v̄ ′2 can only have the same type in Ai if their counterparts v̄1
and v̄2 from Ti−1 have the same type in Ai−1. Thus, our construction
does not create any new conflicts in the examples. Moreover, note that
|Ti| = |T | = m for all i ∈ [0, λ]. We can now prove the remaining items
from Lemma 7.7.

Claim 2. For all i ∈ [0, λ − 1], there is an ℓ∗-tuple ūi in Ai and an
FO[σi,q∗]-formula ψi with k+ ℓ∗ free variables such that the training
error of hAiψi,ūi on Ti is bounded by ε∗ + i

λε.

Proof. We have already handled the case i = 0 above. Now let i > 0
and assume that the claim holds for i− 1. As described above, using
Lemma 7.6, there is an ℓ∗-tuple ū ′

i−1 inNAi−1
4r+2(Xi) and an FO[σi−1,q∗]-

formula ψ ′
i−1 with k+ ℓ∗ free variables such that the training error

114 parameterised complexity of learning

of hAi−1
ψ ′
i−1,ū ′

i−1
on Ti−1 is bounded by ε∗ + i

λε. By the construction of
Ai, the tuple ū ′

i−1 is also contained in Ai. We set ūi := ū ′
i−1. As

we have seen during the construction of Ti, for an example (v̄, λ) in
Ti−1, the vertices of v̄ outside NAi−1

(k+2)(2r+1)(Yi) can only influence
the classification of v̄ by their local type and do not interact with the
parameters. Moreover, using the relations introduced in Steps 2 and 3

in the construction of Ai, we can interpret NAi−1
Ri

(Zi) in Ai. All in all,
using the distance information encoded in Step 1 together with the
types encoded in Step 4 as well as the relations introduced in Steps 2

and 3 in the construction of Ai, there is an FO[σi,q∗]-formula ψi with
k+ ℓ∗ free variables such that errTi

(
hAiψi,ūi

)
⩽ ε∗ + i

λε. ⌟

Claim 3. In Aλ, there is an FO[σλ,q∗]-formula ψλ with k free variables,
i. e. without any free parameter variables, such that errTλ

(
hAλψλ

)
⩽

ε∗ + ε.

Proof. Since Splitter has a winning strategy for the (λ,R)-splitter game
on A, we have NAλ−1

4r+2(Xλ) ⊆ N
Aλ−1
Rλ

(Zλ) ⊆ {wλ,1, . . . ,wλ,ℓ∗} in the last
step of our computation. Thus, there is an ℓ∗-tuple ū ′

λ−1 containing
only vertices from {wλ,1, . . . ,wλ,ℓ∗} and an FO[σλ−1,q∗]-formula ψ ′

λ−1

with k+ ℓ∗ free variables such that errTλ−1
(
h
Aλ−1
ψ ′
λ−1,ū ′

λ−1

)
⩽ ε∗ + ε. The

vertices wλ,j can be identified in Aλ using the fresh colours Bλ,j in σλ.
Hence, there is also an FO[σλ,q∗]-formula ψλ with k free variables
such that errTλ

(
hAλψλ

)
⩽ ε∗ + ε. ⌟

Claim 4. For all i ∈ [0, λ− 1], there is a
((
2(λ− i)− 1

)
ℓ∗
)

-tuple w̄i in Ai

and an FO[σi,q∗+(λ− i− 1) ·R]-formula φi with k+
(
2(λ− i)− 1

)
· ℓ∗

free variables such that errTi
(
hAiφi,w̄i

)
⩽ ε∗ + ε.

Proof. For i = λ− 1, we have seen in the proof of Claim 3 that there
is an ℓ∗-tuple ū ′

λ−1 containing only vertices from {wλ,1, . . . ,wλ,ℓ∗}

and an FO[σλ−1,q∗]-formula ψ ′
λ−1 with k + ℓ∗ free variables such

that errTλ−1
(
h
Aλ−1
ψ ′
λ−1,ū ′

λ−1

)
⩽ ε∗ + ε. Thus, we can choose w̄λ−1 =

(wλ,1, . . . ,wλ,ℓ∗). With slight modifications of ψ ′
λ−1, we can obtain

an FO[σλ−1,q∗]-formula φλ−1 with k + ℓ∗ free variables such that
h
Aλ−1
φλ−1,w̄λ−1 has the same property. These modifications might be

needed, since the vertices in w̄λ−1 may appear in a different order
than in ū ′

λ−1.

Now assume that the claim holds for i+ 1, so there is a
((
2(λ−

i− 1) − 1
)
· ℓ∗

)
-tuple w̄i+1 in Ai+1 and an FO[σi,q∗ + (λ− i− 2) · R]-

formula φi+1 with k+
(
2(λ− i− 1) − 1

)
· ℓ∗ free variables such that

errTi+1
(
h
Ai+1
φi+1,w̄i+1

)
⩽ ε∗ + ε. To obtain the

((
2(λ− i) − 1

)
· ℓ∗

)
-tuple

w̄i, we simply drop all vertices from w̄i+1 that are not contained in Ai
(or, more formally, replace them with arbitrary vertices from Ai and do

7.3 tractability of pac learning 115

not use them in our formula) and append the vertices wi,1, . . . ,wi,ℓ∗
and yi,1, . . . ,yi,ℓ∗ with yj = yℓi for j > ℓi. Using these parameters,
we can interpret Ai+1 in Ai. To deal with the distance information
encoded in Step 1, we might need to increase the quantifier rank
by logR. Hence, there is an FO[σi,q∗ + (λ − i − 1) · R]-formula φi
with k+

(
2(λ− i) − 1

)
· ℓ∗ free variables such that errTi

(
hAiφi,w̄i

)
⩽

ε∗ + ε. ⌟

These claims prove Items (1)–(5) of Lemma 7.7. The sets Xi can be
computed by an fpt algorithm. Furthermore, trying all possible choices
for the sets Yi adds a factor that only depends on the parameters. In
the proof of Theorem 2.20, Grohe, Kreutzer, and Siebertz [52] show
that Splitter’s winning strategy can be computed by an fpt algorithm.
With this, we obtain the vertices wi,1, . . . ,wi,ℓ∗ . This is all we need to
compute the structures and training sequences in our algorithm. To
identify suitable parameters w̄i and formulas φi, we can check all
tuples found as candidates for parameters and all possible formulas
with a suitable bound on the quantifier rank. The number of formulas
to check only depends on k, ℓ, σ, and q. Furthermore, by Theorem 2.20,
there is an fpt algorithm for model checking first-order formulas on
nowhere dense classes.

Thus, there is an fpt algorithm with parameter k+ ℓ∗+q∗+ 1/ε+ |σ|

that computes A1, . . . ,Aλ, T1, . . . , Tλ, and suitable w̄λ−1, . . . , w̄0 and
φλ−1, . . . ,φ0 on input k, ℓ∗,q∗, ε,A, T for A ∈ C. This completes the
proof of Lemma 7.7.

7.3 tractability of pac learning

In this section, we extend the tractability result from Theorem 7.5 to
PAC learning. For that, we use the concept of the VC dimension of
a hypothesis class that we already mentioned in Chapter 3. Let us
briefly introduce this concept and discuss the related results that we
use in this section.

Let X be an instance space and H be a hypothesis class of hypotheses
h : X → {0, 1} (cf. Chapter 3). For a subset S ⊆ X, we say that S is
shattered by H if for every S ′ ⊆ S, there is a hypothesis h ∈ H such
that for all x ∈ S we have h(x) = 1 if and only if x ∈ S ′. Intuitively,
this means that H, restricted to elements in S, contains every possible
Boolean classification of the elements from S. The Vapnik-Chervonenkis VC dimension

dimension or VC dimension of the hypothesis class H, denoted by
VC(H), is the size of the largest set S ⊆ X that is shattered by H,
or ∞ if arbitrarily large finite sets can be shattered by H. For an
FO[σ]-formula φ with k + ℓ free variables and a σ-structure A, we
let VC(φ,k, ℓ,A) = VC

({
hAφ,w̄

∣∣ w̄ ∈ (
U(A)

)ℓ}). We extend this to
classes of structures C by VC(φ,k, ℓ,C) = supA∈C VC(φ,k, ℓ,A) and to
sets Φ of FO[σ]-formulas by VC(Φ,k, ℓ,C) = supφ∈ΦVC(φ,k, ℓ,C).

116 parameterised complexity of learning

Grohe and Turán [57] initiated the analysis of the VC dimension
VC(φ,k, ℓ,C) for first-order and monadic second-order formulas on
several classes of structures, including graphs of bounded genus and
graphs of bounded degree. Based on this research, Adler and Adler [2]
proved the following result for nowhere dense graph classes.

Theorem 7.9 ([2]). Let C be a subgraph-closed class of graphs. Then
VC(φ,k, ℓ,C) is finite for all k, ℓ ∈ N and for every FO-formula φ with
k+ ℓ free variables if and only if C is nowhere dense.

To the best of our knowledge, it is still an open problem whether
this theorem can be generalised from graphs to arbitrary relational
structures with finite signatures.

The following result links the VC dimension of a hypothesis class
with agnostic PAC learnability.

Theorem 7.10 (The Fundamental Theorem of Statistical Learning [85]).
A hypothesis class H is (agnostically) PAC-learnable if and only if it has
finite VC dimension.

Furthermore, if H has finite VC dimension, then H can be learned by any
algorithm that follows the Empirical Risk Minimisation rule with sample
complexity (i. e. the number of examples needed to fulfil the bounds required
for agnostic PAC learnability) mH(ε, δ) ∈ O

(
VC(H)+log(1/δ)

ε2

)
.

We can now combine Theorems 7.5, 7.9, and 7.10 to prove that
the following PAC-learning problem is fixed-parameter tractable on
nowhere dense graph classes.

p-FO-Learn-PAC(L,Q)

Input: σ-structure A, rational numbers ε, δ > 0, probability
distribution D on

(
U(A)

)k × {0, 1}, k, ℓ∗,q∗ ∈N

Parameter: k+ ℓ∗ + q∗ + 1
ε +

1
δ + |σ|

Problem: Return a formula φ(x̄, ȳ) ∈ FO[σ,q] for some q ⩽
Q(k, ℓ∗,q∗) with |x̄| = k and |ȳ| = ℓ ⩽ L(k, ℓ∗,q∗), and
return a tuple w̄ ∈

(
U(A)

)ℓ such that, with probability
of at least 1− δ over the choice of examples drawn i.i.d.
from D, it holds that

errD
(
hAφ,w̄

)
⩽ ε∗ + ε,

where

ε∗ := min
{

errD
(
hAφ∗,w̄∗

) ∣∣ hAφ∗,w̄∗ ∈ Hq∗,k,ℓ∗(A)
}

.

Theorem 7.11. For every effectively nowhere dense graph class C, there
are functions L,Q : N3 → N such that p-FO-Learn-PAC(L,Q) is fixed-
parameter tractable on C.

7.3 tractability of pac learning 117

Proof. Let C be an effectively nowhere dense graph class. Let L,Q
be as in the proof of Theorem 7.5 and let Φ be the set of all FO[σ,q]-
formulas φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ = L(k, ℓ∗,q∗). By Theorem 7.9,
VC(φ,k, ℓ,C) is finite for every φ ∈ Φ. Since, up to equivalence, Φ
only contains finitely many formulas, VC(Φ,k, ℓ,C) is finite as well.
Hence, by Theorem 7.10, there is a constant d ∈N such that for every
A ∈ C, the hypothesis class HΦ,k,ℓ(A) can be learned by any algorithm
that follows the ERM rule with sample complexity mHΦ,k,ℓ(A)(ε, δ) ∈
O
(
d+log(1/δ)

ε2

)
. Thus, we can use the algorithm from Theorem 7.5 to

solve p-FO-Learn-PAC(L,Q).

Because of the bounded VC dimension, the number of examples
needed in Theorem 7.11 is independent of (the size of) the input graph.

We end this section with an extension of Theorem 7.11 to arbitrary
relational structures. There, we cannot rely on Theorem 7.9 any more.
Instead, to bound the number of needed examples, we proceed as in
Chapter 4 by bounding the size of the hypothesis class. Although this
number depends on the size of the input structure, it is still sufficient
to yield a tractable learning result.

Theorem 7.12. For every effectively nowhere dense class C of structures,
there are functions L,Q : N3 → N such that p-FO-Learn-PAC(L,Q) is
fixed-parameter tractable on C.

Proof. Let L,Q be as in the proof of Theorem 7.5 and let Φ be the set of
all FO[σ,q]-formulas φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ = L(k, ℓ∗,q∗). The
number of formulas in Φ, up to equivalence, only depends on k, ℓ∗,
q∗, and σ. Furthermore, for every input structure A, we can bound the
number of possible parameter choices by |A|ℓ. Hence, the size of the
hypothesis class HΦ,k,ℓ(A) can be bounded by g(k+ ℓ∗ + q∗ |σ|) · |A|ℓ

for some function g. Analogously to the proof of Theorem 4.11, using
Lemma 3.9, we can show that it suffices to query

mHΦ,k,ℓ(A)(ε, δ) :=


2 log

(
2g(k+ ℓ∗ + q∗ + |σ|) · |A|ℓ /δ

)
ε2


many examples and then use an algorithm for p-FO-Learn-ERM(L,Q)

to solve p-FO-Learn-PAC(L,Q).
Since mHΦ,k,ℓ(A)(ε, δ) ∈ O

(
f(k+ ℓ∗ + q∗ + 1

ε +
1
δ + |σ|) · log(|A|)

)
for

some function f, and the running time of the algorithm from The-
orem 7.5 is polynomial in the number of examples, this yields an fpt
algorithm.

8
C O N C L U S I O N

In this thesis, we have studied the descriptive complexity of machine-
learning problems, where the task is to learn a hypothesis from a class
that can be defined in a certain logic.

We have proved sublinear-time non-learnability results for first-
order logic and learnability results for two extensions of first-order
logic with certain data-aggregation methods. We have also studied the
parameterised complexity of learning first-order logic and seen both
tractability and intractability results.

For the extension FOCN of first-order logic with counting quantifiers,
we have proved that all three introduced types of problems—the
consistent learning, the Empirical Risk Minimisation (ERM), and the
PAC-learning problem—can be solved in sublinear time on classes of
structures of small degree. For that, we utilised Hanf locality as well
as a recently published isomorphism test.

To obtain learnability results for hypotheses that can combine rela-
tional and numerical information, we have introduced the logic FOWA,
an extension of first-order logic with weight aggregation. We have
shown that concepts definable in the fragment FOWA1 can be learned
in sublinear time over weighted structures of small degree. For the
proof, we have provided locality results, namely Feferman-Vaught
decompositions and a Gaifman normal form for the fragment FOW1

as well as a localisation theorem for FOWA1.
Towards a better understanding of the complexity of machine-

learning problems on richer classes of structures, we have studied the
parameterised complexity of learning first-order logic. On arbitrary
relational structures and under common complexity-theoretic assump-
tions, the ERM problem is intractable. For nowhere dense classes of
structures, however, we have proved that the ERM problem and the
PAC-learning problem are in fact fixed-parameter tractable.

future work

In the proofs of the aforementioned fixed-parameter tractability results,
we return hypotheses that may use more parameters and a larger quan-
tifier rank than the optimal hypotheses that we compare them with. It
remains open whether the results also hold for stricter requirements
on the returned hypotheses.

Similarly to sublinear-time learnability, it would be desirable to
generalise the fixed-parameter tractability results to stronger logics.
Due to its fixed-parameter tractable model-checking problem, the

119

120 conclusion

counting logic FOC1 from [56] would be a good candidate. For first-
order logic with weight aggregation, a first step towards a tractable
learning problem would be a model-checking result for suitable classes
of structures.

In [53] and [47], the authors provide sublinear-time learning res-
ults for concepts definable in monadic second-order logic (MSO). It
would be interesting to study also the parameterised complexity of
this problem. Due to Courcelle’s, Makowsky’s, and Rotics’s results
[26, 27], it seems plausible that learning MSO-definable concepts is
fixed-parameter tractable on classes of bounded treewidth, classes
of bounded clique-width, and classes of bounded rank-width. This
also raises the question whether there is a reduction from the MSO
model-checking problem to MSO learning, similar to the reduction we
have given for FO in Chapter 7.

Since, by the results presented in this thesis, FO model checking
and FO learning are both intractable on arbitrary relational structures
and fixed-parameter tractable on nowhere dense classes, the question
arises whether the problems are actually equivalent in terms of their
computational complexity on all classes of structures (that satisfy reas-
onable closure properties). We have already settled one of the two
directions of this relationship, since the reduction from FO model
checking to FO learning presented in Section 7.1 applies to all classes
that are closed under union and colour expansions. For the other
direction, we would need a reduction from FO learning to FO model
checking. Our tractability result in Section 7.2 uses the model-checking
problem, but also heavily depends on the characterisation of nowhere
dense classes via the Splitter game. Thus, there is no straightforward
generalisation to other classes of structures. To gain more insights
on the relationship between model-checking and learning, one could
study the parameterised complexity of the learning problem on dense
graph classes with a tractable FO model-checking problem, such as
classes of bounded clique-width or bounded rank-width [27], certain
classes of interval graphs [43], or classes of structures obtained via
FO interpretations or FO transductions [42]. While a unified approach
using FO model checking to solve the learning problem would be desir-
able, it might also be the case that, similar to the relationship between
model checking and counting [50], learning is computationally harder
than model checking.

Finally, it would be interesting to study non-Boolean classification
problems, where classifiers are described by terms instead of formulas.
As for the generalisations of our fixed-parameter tractability results,
the logic FOC1 as well as suitable fragments of FOWA would be good
starting points.

B I B L I O G R A P H Y

[1] Azza Abouzied, Dana Angluin, Christos H. Papadimitriou,
Joseph M. Hellerstein and Avi Silberschatz. ‘Learning and verify-
ing quantified boolean queries by example’. In: Proceedings of the
32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2013, New York, NY, USA - June 22
- 27, 2013. Ed. by Richard Hull and Wenfei Fan. ACM, 2013,
pp. 49–60. doi: 10.1145/2463664.2465220.

[2] Hans Adler and Isolde Adler. ‘Interpreting nowhere dense
graph classes as a classical notion of model theory’. In: Eur. J.
Comb. 36 (2014), pp. 322–330. doi: 10.1016/j.ejc.2013.06.048.

[3] Isolde Adler and Polly Fahey. ‘Faster Property Testers in a
Variation of the Bounded Degree Model’. In: 40th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani,
K K Birla Goa Campus, Goa, India (Virtual Conference). Ed. by Nitin
Saxena and Sunil Simon. Vol. 182. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 7:1–7:15. doi: 10.4230/
LIPIcs.FSTTCS.2020.7.

[4] Isolde Adler and Frederik Harwath. ‘Property Testing for Bound-
ed Degree Databases’. In: 35th Symposium on Theoretical Aspects
of Computer Science, STACS 2018, February 28 to March 3, 2018,
Caen, France. Ed. by Rolf Niedermeier and Brigitte Vallée. Vol. 96.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
6:1–6:14. doi: 10.4230/LIPIcs.STACS.2018.6.

[5] Howard Aizenstein, Tibor Hegedüs, Lisa Hellerstein and Le-
onard Pitt. ‘Complexity Theoretic Hardness Results for Query
Learning’. In: Comput. Complex. 7.1 (1998), pp. 19–53. doi: 10.
1007/PL00001593.

[6] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis and Wang
Chiew Tan. ‘Characterizing schema mappings via data exam-
ples’. In: ACM Trans. Database Syst. 36.4 (2011), 23:1–23:48. doi:
10.1145/2043652.2043656.

[7] Dana Angluin. ‘Queries and Concept Learning’. In: Machine
Learning 2.4 (1987), pp. 319–342. doi: 10.1007/BF00116828.

[8] Albert Atserias, Martin Grohe and Dániel Marx. ‘Size Bounds
and Query Plans for Relational Joins’. In: SIAM J. Comput. 42.4
(2013), pp. 1737–1767. doi: 10.1137/110859440.

121

https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.7
https://doi.org/10.4230/LIPIcs.STACS.2018.6
https://doi.org/10.1007/PL00001593
https://doi.org/10.1007/PL00001593
https://doi.org/10.1145/2043652.2043656
https://doi.org/10.1007/BF00116828
https://doi.org/10.1137/110859440

122 bibliography

[9] Pablo Barceló, Alexander Baumgartner, Victor Dalmau and
Benny Kimelfeld. ‘Regularizing conjunctive features for clas-
sification’. In: J. Comput. Syst. Sci. 119 (2021), pp. 97–124. doi:
10.1016/j.jcss.2021.01.003.

[10] Pablo Barceló and Miguel Romero. ‘The Complexity of Reverse
Engineering Problems for Conjunctive Queries’. In: 20th Interna-
tional Conference on Database Theory, ICDT 2017, March 21-24, 2017,
Venice, Italy. Ed. by Michael Benedikt and Giorgio Orsi. Vol. 68.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
7:1–7:17. doi: 10.4230/LIPIcs.ICDT.2017.7.

[11] Steffen van Bergerem. ‘Learning Concepts Definable in First-
Order Logic with Counting’. In: 34th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 2019, pp. 1–13. doi: 10.1109/
LICS.2019.8785811.

[12] Steffen van Bergerem, Martin Grohe and Martin Ritzert. ‘On
the Parameterized Complexity of Learning First-Order Logic’.
In: PODS 2022: International Conference on Management of Data,
Philadelphia, PA, USA, June 12-17, 2022. ACM, 2022, pp. 337–346.
doi: 10.1145/3517804.3524151.

[13] Steffen van Bergerem and Nicole Schweikardt. ‘Learning Con-
cepts Described By Weight Aggregation Logic’. In: 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021, Ljubljana,
Slovenia (Virtual Conference), January 25-28, 2021. Vol. 183. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 10:1–
10:18. doi: 10.4230/LIPIcs.CSL.2021.10.

[14] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler and Man-
fred K. Warmuth. ‘Learnability and the Vapnik-Chervonenkis
dimension’. In: J. ACM 36.4 (1989), pp. 929–965. doi: 10.1145/
76359.76371.

[15] Angela Bonifati, Radu Ciucanu and Aurélien Lemay. ‘Learning
Path Queries on Graph Databases’. In: Proceedings of the 18th
International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, March 23-27, 2015. Ed. by Gustavo Alonso,
Floris Geerts, Lucian Popa, Pablo Barceló, Jens Teubner, Martín
Ugarte, Jan Van den Bussche and Jan Paredaens. OpenProceed-
ings.org, 2015, pp. 109–120. doi: 10.5441/002/edbt.2015.11.

[16] Angela Bonifati, Radu Ciucanu and Slawek Staworko. ‘Learning
Join Queries from User Examples’. In: ACM Trans. Database Syst.
40.4 (2016), 24:1–24:38. doi: 10.1145/2818637.

[17] Angela Bonifati, Ugo Comignani, Emmanuel Coquery and Ro-
muald Thion. ‘Interactive Mapping Specification with Exemplar
Tuples’. In: ACM Trans. Database Syst. 44.3 (2019), 10:1–10:44. doi:
10.1145/3321485.

https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.1145/2818637
https://doi.org/10.1145/3321485

bibliography 123

[18] Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms.
Cambridge University Press, 1994.

[19] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld
and Nicole Schweikardt. ‘Answering (Unions of) Conjunctive
Queries using Random Access and Random-Order Enumera-
tion’. In: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2020, Portland,
OR, USA, June 14-19, 2020. Ed. by Dan Suciu, Yufei Tao and
Zhewei Wei. ACM, 2020, pp. 393–409. doi: 10.1145/3375395.
3387662.

[20] Balder ten Cate and Victor Dalmau. ‘Conjunctive Queries: Unique
Characterizations and Exact Learnability’. In: 24th International
Conference on Database Theory, ICDT 2021, March 23-26, 2021,
Nicosia, Cyprus. Ed. by Ke Yi and Zhewei Wei. Vol. 186. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 9:1–
9:24. doi: 10.4230/LIPIcs.ICDT.2021.9.

[21] Balder ten Cate, Víctor Dalmau and Phokion G. Kolaitis. ‘Learn-
ing schema mappings’. In: ACM Trans. Database Syst. 38.4 (2013),
28:1–28:31. doi: 10.1145/2539032.2539035.

[22] Balder ten Cate, Phokion G. Kolaitis, Kun Qian and Wang-Chiew
Tan. ‘Active Learning of GAV Schema Mappings’. In: Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Houston, TX, USA, June 10-15, 2018. Ed. by
Jan Van den Bussche and Marcelo Arenas. ACM, 2018, pp. 355–
368. doi: 10.1145/3196959.3196974.

[23] Adrien Champion, Tomoya Chiba, Naoki Kobayashi and Ryosuke
Sato. ‘ICE-Based Refinement Type Discovery for Higher-Order
Functional Programs’. In: J. Autom. Reason. 64.7 (2020), pp. 1393–
1418. doi: 10.1007/s10817-020-09571-y.

[24] Ashok K. Chandra and David Harel. ‘Structure and Complexity
of Relational Queries’. In: XP1 Workshop on Relational Database
Theory, 30 June - 2 July 1980, SUNY at Stony Brook, NY, USA.
Ed. by David Maier. 1980.

[25] William W. Cohen and C. David Page Jr. ‘Polynomial Learn-
ability and Inductive Logic Programming: Methods and Res-
ults’. In: New Gener. Comput. 13.3&4 (1995), pp. 369–409. doi:
10.1007/BF03037231.

[26] Bruno Courcelle. ‘The Monadic Second-Order Logic of Graphs. I.
Recognizable Sets of Finite Graphs’. In: Inf. Comput. 85.1 (1990),
pp. 12–75. doi: 10.1016/0890-5401(90)90043-H.

[27] Bruno Courcelle, Johann A. Makowsky and Udi Rotics. ‘Linear
Time Solvable Optimization Problems on Graphs of Bounded
Clique-Width’. In: Theory Comput. Syst. 33.2 (2000), pp. 125–150.
doi: 10.1007/s002249910009.

https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.4230/LIPIcs.ICDT.2021.9
https://doi.org/10.1145/2539032.2539035
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/BF03037231
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009

124 bibliography

[28] Andrew Cropper, Sebastijan Dumancic, Richard Evans and
Stephen H. Muggleton. ‘Inductive logic programming at 30’.
In: Mach. Learn. 111.1 (2022), pp. 147–172. doi: 10.1007/s10994-
021-06089-1.

[29] Rodney G. Downey and Michael R. Fellows. ‘Fixed-Parameter
Tractability and Completeness II: On Completeness for W[1]’. In:
Theor. Comput. Sci. 141.1&2 (1995), pp. 109–131. doi: 10.1016/
0304-3975(94)00097-3.

[30] Rodney G. Downey, Michael R. Fellows and Udayan Taylor. ‘The
Parameterized Complexity of Relational Database Queries and
an Improved Characterization of W[1]’. In: First Conference of the
Centre for Discrete Mathematics and Theoretical Computer Science,
DMTCS 1996, Auckland, New Zealand, December, 9-13, 1996. Ed. by
Douglas S. Bridges, Cristian S. Calude, Jeremy Gibbons, Steve
Reeves and Ian H. Witten. Springer-Verlag, Singapore, 1996,
pp. 194–213.

[31] Arnaud Durand, Nicole Schweikardt and Luc Segoufin. ‘Enu-
merating answers to first-order queries over databases of low de-
gree’. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2014, Snow-
bird, UT, USA, June 22-27, 2014. Ed. by Richard Hull and Martin
Grohe. ACM, 2014, pp. 121–131. doi: 10.1145/2594538.2594539.

[32] Zdenek Dvorák, Daniel Král and Robin Thomas. ‘Deciding First-
Order Properties for Sparse Graphs’. In: 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society,
2010, pp. 133–142. doi: 10.1109/FOCS.2010.20.

[33] Guy Even, Moti Medina and Dana Ron. ‘Deterministic Stateless
Centralized Local Algorithms for Bounded Degree Graphs’. In:
Algorithms - ESA 2014 - 22th Annual European Symposium, Wro-
claw, Poland, September 8-10, 2014. Proceedings. Ed. by Andreas S.
Schulz and Dorothea Wagner. Vol. 8737. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 394–405. doi: 10.1007/978-3-
662-44777-2_33.

[34] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg and
P. Madhusudan. ‘Horn-ICE learning for synthesizing invariants
and contracts’. In: Proc. ACM Program. Lang. 2.OOPSLA (2018),
131:1–131:25. doi: 10.1145/3276501.

[35] Ronald Fagin. ‘Generalized first-order spectra and polynomial-
time recognizable sets’. In: Complexity of computation (Proc. SIAM-
AMS Sympos., New York, 1973). SIAM-AMS Proc., Vol. VII. Amer.
Math. Soc., Providence, R.I., 1974, pp. 43–73.

https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1145/2594538.2594539
https://doi.org/10.1109/FOCS.2010.20
https://doi.org/10.1007/978-3-662-44777-2_33
https://doi.org/10.1007/978-3-662-44777-2_33
https://doi.org/10.1145/3276501

bibliography 125

[36] Ronald Fagin, Larry J. Stockmeyer and Moshe Y. Vardi. ‘On
Monadic NP vs. Monadic co-NP’. In: Inf. Comput. 120.1 (1995),
pp. 78–92. doi: 10.1006/inco.1995.1100.

[37] Solomon Feferman and Robert L. Vaught. ‘The first-order prop-
erties of products of algebraic systems’. In: Fundamenta Mathem-
aticae 47 (1959), pp. 57–103.

[38] Jörg Flum, Markus Frick and Martin Grohe. ‘Query evaluation
via tree-decompositions’. In: J. ACM 49.6 (2002), pp. 716–752.
doi: 10.1145/602220.602222.

[39] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006. isbn: 978-3-540-29952-3. doi: 10.1007/3-540-
29953-X.

[40] Frank Fuhlbrück. ‘Fixed-parameter tractability of the graph
isomorphism and canonization problems’. Diploma thesis. Hum-
boldt-Universität zu Berlin, 2013.

[41] Haim Gaifman. ‘On Local and Non-Local Properties’. In: Pro-
ceedings of the Herbrand Symposium. Ed. by Jacques Stern. Vol. 107.
Studies in Logic and the Foundations of Mathematics. North-
Holland, 1982, pp. 105–135. doi: 10 . 1016 / S0049 - 237X(08)

71879-2.

[42] Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov
and M. S. Ramanujan. ‘A New Perspective on FO Model Check-
ing of Dense Graph Classes’. In: ACM Trans. Comput. Log. 21.4
(2020), 28:1–28:23. doi: 10.1145/3383206.

[43] Robert Ganian, Petr Hlinený, Daniel Král, Jan Obdrzálek, Jarett
Schwartz and Jakub Teska. ‘FO Model Checking of Interval
Graphs’. In: Log. Methods Comput. Sci. 11.4 (2015). doi: 10.2168/
LMCS-11(4:11)2015.

[44] Pranav Garg, Christof Löding, P. Madhusudan and Daniel Neider.
‘ICE: A Robust Framework for Learning Invariants’. In: Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings. Ed. by Armin Biere and Roderick Bloem.
Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,
pp. 69–87. doi: 10.1007/978-3-319-08867-9_5.

[45] Oded Goldreich and Dana Ron. ‘Property Testing in Bounded
Degree Graphs’. In: Algorithmica 32.2 (2002), pp. 302–343. doi:
10.1007/s00453-001-0078-7.

[46] Georg Gottlob and Pierre Senellart. ‘Schema mapping discovery
from data instances’. In: J. ACM 57.2 (2010), 6:1–6:37. doi: 10.
1145/1667053.1667055.

https://doi.org/10.1006/inco.1995.1100
https://doi.org/10.1145/602220.602222
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1145/3383206
https://doi.org/10.2168/LMCS-11(4:11)2015
https://doi.org/10.2168/LMCS-11(4:11)2015
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/s00453-001-0078-7
https://doi.org/10.1145/1667053.1667055
https://doi.org/10.1145/1667053.1667055

126 bibliography

[47] Emilie Grienenberger and Martin Ritzert. ‘Learning Definable
Hypotheses on Trees’. In: 22nd International Conference on Data-
base Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal. 2019,
24:1–24:18. doi: 10.4230/LIPIcs.ICDT.2019.24.

[48] Martin Grohe. ‘Generalized Model-Checking Problems for First-
Order Logic’. In: STACS 2001, 18th Annual Symposium on Theoret-
ical Aspects of Computer Science, Dresden, Germany, February 15-17,
2001, Proceedings. Ed. by Afonso Ferreira and Horst Reichel.
Vol. 2010. Lecture Notes in Computer Science. Springer, 2001,
pp. 12–26. doi: 10.1007/3-540-44693-1_2.

[49] Martin Grohe. ‘Logic, graphs, and algorithms’. In: Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas].
Ed. by Jörg Flum, Erich Grädel and Thomas Wilke. Vol. 2. Texts
in Logic and Games. Amsterdam University Press, 2008, pp. 357–
422.

[50] Martin Grohe. Descriptive Complexity, Canonisation, and Defin-
able Graph Structure Theory. Vol. 47. Lecture Notes in Logic.
Cambridge University Press, 2017. isbn: 9781139028868. doi:
10.1017/9781139028868.

[51] Martin Grohe. ‘word2vec, node2vec, graph2vec, X2vec: Towards
a Theory of Vector Embeddings of Structured Data’. In: Pro-
ceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA,
June 14-19, 2020. Ed. by Dan Suciu, Yufei Tao and Zhewei Wei.
ACM, 2020, pp. 1–16. doi: 10.1145/3375395.3387641.

[52] Martin Grohe, Stephan Kreutzer and Sebastian Siebertz. ‘De-
ciding First-Order Properties of Nowhere Dense Graphs’. In: J.
ACM 64.3 (2017), 17:1–17:32. doi: 10.1145/3051095.

[53] Martin Grohe, Christof Löding and Martin Ritzert. ‘Learning
MSO-definable hypotheses on strings’. In: International Confer-
ence on Algorithmic Learning Theory, ALT 2017, 15-17 October 2017,
Kyoto University, Kyoto, Japan. 2017, pp. 434–451.

[54] Martin Grohe, Daniel Neuen and Pascal Schweitzer. ‘A Faster
Isomorphism Test for Graphs of Small Degree’. In: 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018. Ed. by Mikkel Thorup. IEEE
Computer Society, 2018, pp. 89–100. doi: 10.1109/FOCS.2018.
00018.

[55] Martin Grohe and Martin Ritzert. ‘Learning first-order defin-
able concepts over structures of small degree’. In: 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, June 20-23, 2017. 2017, pp. 1–12. doi:
10.1109/LICS.2017.8005080.

https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://doi.org/10.1007/3-540-44693-1_2
https://doi.org/10.1017/9781139028868
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3051095
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1109/LICS.2017.8005080

bibliography 127

[56] Martin Grohe and Nicole Schweikardt. ‘First-Order Query Eval-
uation with Cardinality Conditions’. In: Proceedings of the 37th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Data-
base Systems, Houston, TX, USA, June 10-15, 2018. 2018, pp. 253–
266. doi: 10.1145/3196959.3196970.

[57] Martin Grohe and György Turán. ‘Learnability and Definability
in Trees and Similar Structures’. In: Theory Comput. Syst. 37.1
(2004), pp. 193–220. doi: 10.1007/s00224-003-1112-8.

[58] Aditya Grover and Jure Leskovec. ‘node2vec: Scalable Feature
Learning for Networks’. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016. Ed. by Balaji Krish-
napuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen and Rajeev Rastogi. ACM, 2016, pp. 855–864. doi:
10.1145/2939672.2939754.

[59] Yuri Gurevich. ‘Toward logic tailored for computational com-
plexity’. In: Computation and Proof Theory. Ed. by Egon Börger,
Walter Oberschelp, Michael M. Richter, Brigitta Schinzel and
Wolfgang Thomas. Springer Berlin Heidelberg, 1984, pp. 175–
216.

[60] William Hanf. ‘Model-theoretic methods in the study of ele-
mentary logic’. In: The Theory of Models. Proceedings of the 1963
International Symposium at Berkeley. Ed. by J.W. Addison, Leon
Henkin and Alfred Tarski. Studies in logic and the foundations
of mathematics. Amsterdam: North-Holland Publishing Com-
pany, 1965, pp. 132–145.

[61] David Haussler. ‘Learning Conjunctive Concepts in Structural
Domains’. In: Mach. Learn. 4 (1989), pp. 7–40. doi: 10.1007/
BF00114802.

[62] David Haussler. ‘Decision Theoretic Generalizations of the PAC
Model for Neural Net and Other Learning Applications’. In: Inf.
Comput. 100.1 (1992), pp. 78–150. doi: 10.1016/0890-5401(92)
90010-D.

[63] Kouichi Hirata. ‘On the Hardness of Learning Acyclic Conjunct-
ive Queries’. In: Algorithmic Learning Theory, 11th International
Conference, ALT 2000, Sydney, Australia, December 11-13, 2000, Pro-
ceedings. Ed. by Hiroki Arimura, Sanjay Jain and Arun Sharma.
Vol. 1968. Lecture Notes in Computer Science. Springer, 2000,
pp. 238–251. doi: 10.1007/3-540-40992-0_18.

[64] Neil Immerman. ‘Relational Queries Computable in Polynomial
Time’. In: Inf. Control. 68.1-3 (1986), pp. 86–104. doi: 10.1016/
S0019-9958(86)80029-8.

https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1007/BF00114802
https://doi.org/10.1007/BF00114802
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1007/3-540-40992-0_18
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1016/S0019-9958(86)80029-8

128 bibliography

[65] Neil Immerman. Descriptive complexity. Graduate texts in com-
puter science. Springer, 1999. isbn: 978-1-4612-6809-3. doi: 10.
1007/978-1-4612-0539-5.

[66] Jörg-Uwe Kietz and Saso Dzeroski. ‘Inductive Logic Program-
ming and Learnability’. In: SIGART Bull. 5.1 (1994), pp. 22–32.
doi: 10.1145/181668.181674.

[67] Benny Kimelfeld and Christopher Ré. ‘A Relational Framework
for Classifier Engineering’. In: ACM Trans. Database Syst. 43.3
(2018), 11:1–11:36. doi: 10.1145/3268931.

[68] Stephan Kreutzer. ‘Algorithmic meta-theorems’. In: Finite and Al-
gorithmic Model Theory. Ed. by Javier Esparza, Christian Michaux
and Charles Steinhorn. Vol. 379. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2011, pp. 177–
270.

[69] Dietrich Kuske and Nicole Schweikardt. ‘First-order logic with
counting’. In: 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017.
IEEE Computer Society, 2017, pp. 1–12. doi: 10.1109/LICS.
2017.8005133.

[70] Dietrich Kuske and Nicole Schweikardt. ‘Gaifman Normal Forms
for Counting Extensions of First-Order Logic’. In: 45th Interna-
tional Colloquium on Automata, Languages, and Programming, IC-
ALP 2018, July 9-13, 2018, Prague, Czech Republic. Ed. by Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx and Donald
Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, 133:1–133:14. doi: 10.4230/LIPIcs.ICALP.
2018.133.

[71] Reut Levi, Dana Ron and Ronitt Rubinfeld. ‘Local Algorithms for
Sparse Spanning Graphs’. In: Algorithmica 82.4 (2020), pp. 747–
786. doi: 10.1007/s00453-019-00612-6.

[72] Reut Levi, Ronitt Rubinfeld and Anak Yodpinyanee. ‘Local Com-
putation Algorithms for Graphs of Non-constant Degrees’. In:
Algorithmica 77.4 (2017), pp. 971–994. doi: 10.1007/s00453-016-
0126-y.

[73] Christof Löding, P. Madhusudan and Daniel Neider. ‘Abstract
Learning Frameworks for Synthesis’. In: Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Con-
ference, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings. Ed. by Marsha Chechik
and Jean-François Raskin. Vol. 9636. Lecture Notes in Computer
Science. Springer, 2016, pp. 167–185. doi: 10.1007/978-3-662-
49674-9_10.

https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1145/181668.181674
https://doi.org/10.1145/3268931
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.1007/s00453-019-00612-6
https://doi.org/10.1007/s00453-016-0126-y
https://doi.org/10.1007/s00453-016-0126-y
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-662-49674-9_10

bibliography 129

[74] Johann A. Makowsky. ‘Algorithmic uses of the Feferman-Vaught
Theorem’. In: Ann. Pure Appl. Log. 126.1-3 (2004), pp. 159–213.
doi: 10.1016/j.apal.2003.11.002.

[75] Christopher Morris, Martin Ritzert, Matthias Fey, William L.
Hamilton, Jan Eric Lenssen, Gaurav Rattan and Martin Grohe.
‘Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks’. In: The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
2019, pp. 4602–4609. doi: 10.1609/aaai.v33i01.33014602.

[76] Stephen Muggleton. ‘Inductive Logic Programming’. In: New
Gener. Comput. 8.4 (1991), pp. 295–318. doi: 10.1007/BF03037089.

[77] Stephen Muggleton and Luc De Raedt. ‘Inductive Logic Pro-
gramming: Theory and Methods’. In: J. Log. Program. 19/20

(1994), pp. 629–679. doi: 10.1016/0743-1066(94)90035-3.

[78] Jaroslav Nešetřil. ‘Structural Properties of Sparse Graphs’. In:
Electron. Notes Discret. Math. 31 (2008), pp. 247–251. doi: 10.
1016/j.endm.2008.06.050.

[79] Jaroslav Nešetřil and Patrice Ossona de Mendez. ‘First order
properties on nowhere dense structures’. In: J. Symb. Log. 75.3
(2010), pp. 868–887. doi: 10.2178/jsl/1278682204.

[80] Jaroslav Nešetřil and Patrice Ossona de Mendez. ‘On nowhere
dense graphs’. In: Eur. J. Comb. 32.4 (2011), pp. 600–617. doi:
10.1016/j.ejc.2011.01.006.

[81] Shimei Pan and Tao Ding. ‘Social Media-based User Embed-
ding: A Literature Review’. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019. Ed. by Sarit Kraus. ijcai.org,
2019, pp. 6318–6324. doi: 10.24963/ijcai.2019/881.

[82] Ronitt Rubinfeld, Gil Tamir, Shai Vardi and Ning Xie. ‘Fast Local
Computation Algorithms’. In: Innovations in Computer Science -
ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011.
Proceedings. Ed. by Bernard Chazelle. Tsinghua University Press,
2011, pp. 223–238.

[83] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis,
Hung Q. Ngo and XuanLong Nguyen. ‘Learning Models over
Relational Data: A Brief Tutorial’. In: Scalable Uncertainty Man-
agement - 13th International Conference, SUM 2019, Compiègne,
France, December 16-18, 2019, Proceedings. Ed. by Nahla Ben
Amor, Benjamin Quost and Martin Theobald. Vol. 11940. Lecture
Notes in Computer Science. Springer, 2019, pp. 423–432. doi:
10.1007/978-3-030-35514-2_32.

https://doi.org/10.1016/j.apal.2003.11.002
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/j.endm.2008.06.050
https://doi.org/10.1016/j.endm.2008.06.050
https://doi.org/10.2178/jsl/1278682204
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.24963/ijcai.2019/881
https://doi.org/10.1007/978-3-030-35514-2_32

130 bibliography

[84] Detlef Seese. ‘Linear Time Computable Problems and First-Order
Descriptions’. In: Math. Struct. Comput. Sci. 6.6 (1996), pp. 505–
526.

[85] Shai Shalev-Shwartz and Shai Ben-David. Understanding Ma-
chine Learning: From Theory to Algorithms. New York, NY, USA:
Cambridge University Press, 2014. isbn: 9781107057135. doi:
10.1017/CBO9781107298019.

[86] Robert H. Sloan, Balázs Szörényi and György Turán. ‘Learning
Boolean Functions with Queries’. In: Boolean Models and Methods
in Mathematics, Computer Science, and Engineering. Ed. by Yves
Crama and Peter L. Hammer. Cambridge University Press, 2010,
pp. 221–256. doi: 10.1017/cbo9780511780448.010.

[87] Slawek Staworko and Piotr Wieczorek. ‘Learning twig and path
queries’. In: 15th International Conference on Database Theory, ICDT
2012, Berlin, Germany, March 26-29, 2012. Ed. by Alin Deutsch.
ACM, 2012, pp. 140–154. doi: 10.1145/2274576.2274592.

[88] Szymon Toruńczyk. ‘Aggregate Queries on Sparse Databases’. In:
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2020, Portland, OR, USA,
June 14-19, 2020. Ed. by Dan Suciu, Yufei Tao and Zhewei Wei.
ACM, 2020, pp. 427–443. doi: 10.1145/3375395.3387660.

[89] Leslie G. Valiant. ‘A Theory of the Learnable’. In: Commun. ACM
27.11 (1984), pp. 1134–1142. doi: 10.1145/1968.1972.

[90] Vladimir Vapnik. ‘Principles of Risk Minimization for Learning
Theory’. In: Advances in Neural Information Processing Systems
4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991].
1991, pp. 831–838.

[91] Vladimir Vapnik and Alexey Ya. Chervonenkis. ‘On the Uniform
Convergence of Relative Frequencies of Events to Their Prob-
abilities’. In: Theory of Probability and its Applications 16 (1971),
pp. 264–280. doi: 10.1137/1116025.

[92] Moshe Y. Vardi. ‘The Complexity of Relational Query Languages
(Extended Abstract)’. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco,
California, USA. Ed. by Harry R. Lewis, Barbara B. Simons, Walter
A. Burkhard and Lawrence H. Landweber. ACM, 1982, pp. 137–
146. doi: 10.1145/800070.802186.

[93] Giuseppe Vitali. ‘Sui gruppi di punti e sulle funzioni di variabili
reali’. Italian. In: Torino Atti 43 (1908), pp. 229–246.

[94] He Zhu, Stephen Magill and Suresh Jagannathan. ‘A data-driven
CHC solver’. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018. Ed. by Jeffrey S. Foster

https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/cbo9780511780448.010
https://doi.org/10.1145/2274576.2274592
https://doi.org/10.1145/3375395.3387660
https://doi.org/10.1145/1968.1972
https://doi.org/10.1137/1116025
https://doi.org/10.1145/800070.802186

bibliography 131

and Dan Grossman. ACM, 2018, pp. 707–721. doi: 10.1145/
3192366.3192416.

https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 General Notation and Definitions
	2.2 Relational Structures
	2.3 Logics
	2.4 Locality of First-Order Logic
	2.5 Parameterised Complexity

	3 Learning First-Order Logic
	3.1 Local Access and Complexity Measures
	3.2 Consistent Parameter Learning
	3.3 Consistent Model Learning
	3.4 PAC Learning
	3.5 Related Work

	4 Learning Logics with Counting
	4.1 Hanf Locality
	4.2 Learning Problems for FOCN
	4.3 Structures of Bounded Degree
	4.4 Structures of Small Degree

	5 Weighted Structures and Logics with Weight Aggregation
	5.1 First-Order Logic with Weight Aggregation
	5.2 Feferman-Vaught Decompositions for FOW1
	5.3 Gaifman Normal Form for FOW1
	5.4 Localisation of FOWA1

	6 Learning Logics with Weight Aggregation
	6.1 Learning with Precomputation
	6.2 Consistent Learning
	6.3 Agnostic PAC Learning
	6.4 Learning FOWA1

	7 Parameterised Complexity of Learning
	7.1 Hardness of Learning
	7.2 Tractability of Empirical Risk Minimisation
	7.3 Tractability of PAC Learning

	8 Conclusion
	 Bibliography

