
Learning Aggregate Queries Defined by
First-Order Logic with Counting
Steffen van Bergerem #

Humboldt-Universität zu Berlin, Germany

Nicole Schweikardt #

Humboldt-Universität zu Berlin, Germany
Version: 3rd September 2024

Abstract
In the logical framework introduced by Grohe and Turán (TOCS 2004) for Boolean classification
problems, the instances to classify are tuples from a logical structure, and Boolean classifiers are
described by parametric models based on logical formulas. This is a specific scenario for supervised
passive learning, where classifiers should be learned based on labelled examples. Existing results in
this scenario focus on Boolean classification. This paper presents learnability results beyond Boolean
classification. We focus on multiclass classification problems where the task is to assign input tuples
to arbitrary integers. To represent such integer-valued classifiers, we use aggregate queries specified
by an extension of first-order logic with counting terms called FOC1.

Our main result shows the following: given a database of polylogarithmic degree, within
quasi-linear time, we can build an index structure that makes it possible to learn FOC1-definable
integer-valued classifiers in time polylogarithmic in the size of the database and polynomial in the
number of training examples.

2012 ACM Subject Classification Theory of computation → Database Theory; Theory of computa-
tion → Logic; Theory of computation → Finite Model Theory; Computing methodologies → Logical
and relational learning; Computing methodologies → Supervised learning

Keywords and phrases Supervised learning, multiclass classification problems, counting logic

1 Introduction

We study the complexity of learning aggregate queries from examples. This is a classification
problem of the following form. The elements that are to be classified come from a set X, the
instance space. For a given set V , a V -valued classifier on X is a function c : X → V . We
are given a training set S of labelled examples (x, λ) ∈ X × V , i. e., λ is the label assigned to
the instance x. The goal is to find a classifier, called a hypothesis, that can be used to predict
the label of elements from X, including those not given in S. The term Boolean classification
problem refers to the case where |V | = 2 (often, V is {1, 0}). We use the term multiclass
classification problem to refer to cases where V may be arbitrarily large. In machine learning,
these problems fall into the category of supervised learning tasks: we want to learn a function
from given input-output pairs. In contrast to this, in unsupervised learning (e. g. clustering),
the goal is to learn patterns from unlabelled data [48].

We focus on learning problems related to the framework introduced by Grohe and
Turán [35]. There, the instance space X is a set of tuples from a logical structure (that is
sometimes called the background structure), and the classifiers are Boolean and are described
using parametric models based on logical formulas. In this paper, we extend the framework
to multiclass classification problems where the classifiers are integer-valued, i. e., V = Z. In
the framework that we consider, the background structure is a relational database A, and
the instance space X is the set Ak of all k-tuples of elements from the active domain A of
A (also called the universe of A). Here, k is a fixed positive integer. One fixes a parameter
length ℓ (a fixed non-negative integer). A classifier is specified by a pair p = (t, w̄), where

mailto:steffen.van.bergerem@informatik.hu-berlin.de
https://orcid.org/0000-0002-5212-8992
mailto:schweikn@informatik.hu-berlin.de
https://orcid.org/0000-0001-5705-1675


2 Learning Aggregate Queries Defined by First-Order Logic with Counting

w̄ = (w1, . . . , wℓ) is an ℓ-tuple of elements in A, and t is a counting term in the first-order
logic with counting FOC1 [34] with free variables x1, . . . , xk, y1, . . . , yℓ. This pair p represents
the classifier cp : X → Z that assigns to each k-tuple ā = (a1, . . . , ak) ∈ X the integer i
that is obtained by evaluating the counting term t in the database A while interpreting
the variables x1, . . . , xk with the elements a1, . . . , ak and the variables y1, . . . , yℓ with the
“parameters” w1, . . . , wℓ. We will write hA

t,w̄ to denote this classifier cp.
Given a training set S ⊆ Ak ×Z, we want to find a pair p = (t, w̄) such that the classifier

hA
t,w̄ is consistent with S, i. e., it satisfies hA

t,w̄(ā) = i for every (ā, i) ∈ S.

▶ Example 1.1. Let A be a relational database where the active domain A contains authors
and publications, the binary relation Author contains all pairs (a, p) where a is an author
of the publication p, and the binary relation Citation contains all pairs (p1, p2) where the
publication p1 cites the publication p2.

Suppose we are given a training set S that consists of a few pairs (a, i) where a is an
author and i is the total number of citations of the publications of a. A reasonable classifier
for this setting would be a mapping c : A → Z that assigns to every author a present in the
database the total number i of citations of their publications. In our setting, this can be
represented as follows. We let k = 1 and ℓ = 0. Since ℓ = 0, the “parameter” w is fixed to be
the empty tuple (). Since k = 1, we use a counting term with a single free variable x (that
will be assigned with authors present in the database). We choose the counting term

t(x) := #(z1, z2).
(
Author(x, z1) ∧ Citation(z2, z1)

)
.

Evaluating t(x) for an author x yields the number of tuples (z1, z2) such that x is an author
of publication z1, and z2 is a publication that cites z1. This is precisely the total number of
citations of publications authored by x. Hence, hA

t,() is the desired classifier c.

▶ Example 1.2. Suppose we have a database that maintains a list of all cakes colleagues
brought to work. We model this as a relational database A whose active domain A contains
persons, IDs of cakes, and types of cake. The binary relation Brought contains all pairs (p, c)
where p is a person that brought the cake with ID c, and the binary relation Type contains
all pairs (c, τ) where c is the ID of a cake of type τ (e. g., “chocolate cake”, “strawberry
cake”, “carrot cake”, etc). Suppose we want to find a classifier that predicts the popularity of
colleagues. For this, via a survey, we gather examples (p, i) ∈ A× Z where p is a person and
i is the popularity of the person, and we call the resulting set of labelled examples S. We
choose k = ℓ = 1, so we want to find a classifier that uses a single parameter. According to
our own experience at work, it seems conceivable that the following classifier hA

t,w is consistent
with S: the parameter w is “chocolate cake” and t is the counting term

t(x, y) := #(z).
(
Brought(x, z) ∧ ¬Type(z, y)

)
+ 2 · #(z).

(
Brought(x, z) ∧ Type(z, y)

)
.

Note that t counts the number of cakes brought by person x, where cakes of type y are
counted twice, and the variable y will always be assigned the value of the parameter w.

In many application scenarios, the same database is used multiple times with different
training sets to learn different classifiers. Thus, we consider a setting in which we are first
only given the database, without any training examples. In a precomputation step, we
allow gathering information that will be helpful for solving future learning tasks. This
precomputation step can be viewed as building an index structure that is designed in order
to support solving multiple learning tasks.

In the actual learning phase, we are repeatedly given training sets of labelled examples,
and our task is to output a hypothesis that is consistent with the corresponding training set.



Steffen van Bergerem and Nicole Schweikardt 3

For this learning phase, it would be desirable to have algorithms that run efficiently even
if the database is too large to fit into the main memory. To achieve this, we are interested
in algorithms that require only local access to the database, i. e., instead of having random
access to the database, a learning algorithm should initially start with the elements given in
the training set; subsequently, it may only retrieve the neighbours of elements it already holds
in memory. By utilising the memory hierarchy, such local access can be achieved efficiently
even in cases where random access is too prohibitive. In the context of learning (concerning
Boolean classification problems), this local-access model has been introduced by Grohe and
Ritzert [33].

Our contribution

Our main result is an algorithm that builds the index structure in time linear in the size and
polynomial in the degree of the database. Afterwards, upon input of concrete training sets,
classifiers definable in FOC1 can be learned in time polynomial in the degree of the database
and polynomial in the number of examples given in the training set. Moreover, the classifiers
returned by our algorithm can be evaluated in time polynomial in the degree of the database.
Furthermore, our algorithms for finding a classifier and for evaluating this classifier do not
require random access to the database but only rely on the local-access model.

For databases of polylogarithmic degree (i. e., of degree up to (logn)c where c is a constant
and n is the size of the database), our main result implies that the index structure can be
built in quasi-linear time (i. e., time n·(logn)c); afterwards, FOC1-definable integer-valued
classifiers can be learned in time polylogarithmic (so, in particular, sublinear) in the size of
the database and polynomial in the number of training examples.

Previous results in the framework of Grohe and Turán for Boolean classification problems
relied on the fact that it suffices to check a constant number of queries while limiting the
search space for the parameters to a neighbourhood of a certain radius [33, 7, 10]. For our
setting of multiclass classification with aggregate queries, however, this does not hold any
more. Hence, a priori, it is not clear that sublinear-time learning algorithms are possible for
the multiclass case at all. The main technical challenge towards our learnability result was
to find an approach that keeps the number of queries to check small (i. e., polynomial in the
degree of the database), while still being able to limit the search space for the parameters to
a small neighbourhood around the given training tuples.

Organisation

We provide the necessary definitions concerning FOC1 in Section 2, and we formally introduce
the learning problem that we consider in Section 3. The precise statement of our main result
is given in Theorem 3.1. Our proof makes heavy use of the locality properties of the logic
FOC1 shown in [34], including a decomposition of FOC1-formulas into local formulas. These
properties are used in Section 4 to provide our main technical tool for the proof of the main
result. Section 5 concludes the paper with a summary and an outlook on future work. In the
remainder of this introduction, we give an overview of related work.

Related work

The first-order logic with counting FOC was introduced in [42] and further studied in [34, 7].
This logic extends first-order logic (FO) by the ability to formulate counting terms that
evaluate to integers, and by numerical predicates that allow to compare results of counting
terms. It was shown in [42] that the model-checking problem for FOC is fixed-parameter



4 Learning Aggregate Queries Defined by First-Order Logic with Counting

tractable on classes of structures of bounded degree. From [34] it is known that the fixed-
parameter tractability of FOC cannot be generalised to even very simple classes of structures
of unbounded degree such as unranked trees (under a reasonable assumption in parameterised
complexity). However, [34] identified a fragment called FOC1 for which model-checking of
formulas and evaluation of counting terms are fixed-parameter tractable on all nowhere
dense classes of structures. The present paper uses counting terms of FOC1 to represent
integer-valued classifiers.

The learning framework we consider has been introduced for Boolean classification
problems in [35], which provides information-theoretic learnability results for classes of
classifiers that can be specified using FO- and MSO-formulas on restricted classes of structures,
such as the class of planar graphs or classes of graphs of bounded degree. Algorithmic aspects
of the framework, including the running time of a learning algorithm, were first studied in
[33]. The paper showed that Boolean classifiers definable in FO can be learned in sublinear
time on structures of polylogarithmic degree. Analogous results have been obtained for MSO
on strings [32] and on trees [29], which included a precomputation step to allow for efficient
repeated learning. The paper [9] studied the parameterised complexity of the Boolean
classification problem and showed that on arbitrary relational structures, learning hypotheses
definable in FO is hard for the parameterised complexity class AW[∗] (i. e., subject to a
plausible complexity-theoretic assumption, it is not fixed-parameter tractable). The paper
also showed that the problem is fixed-parameter tractable if the structures come from a
nowhere dense class.

For Boolean classifiers definable in the extension FOCN of FO with counting quantifiers
and numerical predicates, [7] obtained a sublinear-time learning algorithm for structures
of bounded degree, i. e., classes of structures where the degree is bounded by a constant.
Recently, [8] lifted this result to structures of tiny degree, i. e., classes of structures of degree
up to (log logn)c for some constant c, where n is the size of the structure. The paper [10]
considered a notion of weighted structures, which extend ordinary relational structures by
assigning weights, i. e. elements from particular rings or abelian groups, to tuples present
in the structure. It introduced the expressive logic FOWA, which extends FO by means of
aggregating weights and formulating both formulas (that evaluate to “true” or “false”) and
terms (that “aggregate” weights and evaluate to values in the associated ring or abelian group).
For the fragment FOWA1 (that still extends FO), the paper showed that Boolean classifiers
definable by FOWA1-formulas over weighted background structures of polylogarithmic degree
can be learned in sublinear time after quasi-linear-time preprocessing. This lifts the results
obtained in [33] for FO to the substantially more expressive logic FOWA1. As the logic
FOC1 can be embedded in FOWA1, it follows from [10] that Boolean classifiers definable
by FOC1-formulas over background structures of polylogarithmic degree can be learned in
sublinear time after quasi-linear-time preprocessing. The main result of the present paper
can be viewed as a generalisation of this to integer-valued classification problems.

The algorithmic results obtained so far within the framework introduced in [35] all focus
on Boolean classification problems. However, many application scenarios require multiclass
classification (cf. [21, 14, 36]). In the database systems literature, multiclass classifiers
typically are described by aggregate queries [51, 52, 53, 54, 45]. In this paper, aggregate
queries are represented by the counting terms of FOC1.

Closely related to the framework we consider is the framework of inductive logic program-
ming (ILP) [46, 47, 39, 19, 20]. Both frameworks deal with a passive supervised learning
setting, where the learning algorithms are given labelled examples. These examples are
labelled according to some target concept, and the algorithms should return a hypothesis



Steffen van Bergerem and Nicole Schweikardt 5

that approximately matches this target concept. One of the main differences between both
frameworks is that we represent the background knowledge by a relational database, whereas
in ILP, it is represented in a background theory, i. e., a set of formulas. Related logical
learning frameworks have also been studied in formal verification [27, 43, 23, 56, 18].

In the database literature, various approaches to learning queries from examples have
been studied, both in passive (such as ours) and active learning settings. In passive learning
settings, results often focus on conjunctive queries [37, 38, 6, 40, 5, 55] or consider queries
outside the relational database model [50, 11], while we focus on FOC1, an extension of full
first-order logic. In the active learning setting introduced by Angluin [4], learning algorithms
are allowed to actively query an oracle. Results in this setting [2, 49, 1, 11, 12, 15] again
consider various types of queries. Another related subject in the database literature is the
problem of learning schema mappings from examples [13, 28, 3, 16, 17].

2 Preliminaries

This section fixes the basic notation used throughout the paper, and it provides the precise
syntax and semantics of first-order logic with counting FOC1 (the latter is taken almost
verbatim from [34]). We let Z, N, and N⩾1 denote the sets of integers, non-negative integers,
and positive integers, respectively. For m,n ∈ Z, we let [m,n] := {ℓ ∈ Z : m ⩽ ℓ ⩽ n} and
[n] := [1, n]. For a k-tuple x̄ = (x1, . . . , xk) we write |x̄| to denote its arity k. By () we
denote the empty tuple, i. e., the tuple of arity 0.

Signatures and structures

A signature is a finite set of relation symbols. Every relation symbol R has a fixed arity
ar(R) ∈ N. Let σ be a signature. A σ-structure (or σ-database) A consists of a finite set A,
called the universe of A, and a relation R(A) ⊆ Aar(R) for every R ∈ σ. Note that signatures
may contain relation symbols of arity 0. There are only two 0-ary relations over a set A,
namely ∅ and {()}, which we interpret as “false” and “true”, respectively. We define the size
|A| of a σ-structure A as |A| := |A|.

Let σ′ be a signature with σ′ ⊇ σ. A σ′-expansion of a σ-structure A is a σ′-structure A′

which has the same universe as A and which satisfies R(A′) = R(A) for all R ∈ σ.
A substructure of a σ-structure A is a σ-structure B with universe B ⊆ A that satisfies

R(B) ⊆ R(A) for every R ∈ σ. For a set X ⊆ A, the induced substructure of A on X is the
σ-structure A[X] with universe X, where R(A[X]) = R(A) ∩Xar(R) for every R ∈ σ.

Gaifman graph, degree, distances, and neighbourhoods

In this paper, when speaking of graphs, we mean undirected simple graphs.
The Gaifman graph GA of a σ-structure A with universe A is the graph with vertex

set V (GA) = A whose edge set E(GA) contains exactly those edges {v, w} where v, w ∈ A,
v ̸= w, and there exists an R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ R(A) such that v, w ∈
{a1, . . . , aar(R)}. The degree of a σ-structure A is defined as the degree of the Gaifman graph
GA (i. e., the maximum number of neighbours of a vertex of GA).

The distance distA(a, b) between two elements a, b ∈ A is the minimal number of edges
of a path from a to b in GA; if no such path exists, we let distA(a, b) := ∞. For a tuple
ā = (a1, . . . , ak) ∈ Ak and an element b ∈ A, we let distA(ā, b) := mini∈[k] distA(ai, b).

Consider a k-tuple ā = (a1, . . . , ak) ∈ Ak for some k ∈ N⩾1. For every r ⩾ 0, the ball of
radius r (or r-ball) of ā in A is the set NA

r (ā) := {b ∈ A : distA(ā, b) ⩽ r}. The neighbourhood



6 Learning Aggregate Queries Defined by First-Order Logic with Counting

of radius r (or r-neighbourhood) of ā in A is the induced substructure N A
r (ā) := A[NA

r (ā)].

First-order logic with counting FOC1

Let vars be a fixed, countably infinite set of variables. A σ-interpretation I = (A, β) consists
of a σ-structure A and an assignment β : vars → A, where A denotes the universe of A.
For k ∈ N and k distinct variables x1, . . . , xk ∈ vars and elements a1, . . . , ak ∈ A, we write
I a1,...,ak

x1,...,xk
for the interpretation (A, β a1,...,ak

x1,...,xk
), where β a1,...,ak

x1,...,xk
is the assignment β′ with

β′(xi) = ai for every i ∈ [k] and β′(z) = β(z) for all z ∈ vars \ {x1, . . . , xk}.
Next, we provide the syntax and semantics of the logic FOC1 [34]. This logic allows

formulating numerical statements based on counting terms and numerical predicates.
For the remainder of this paper, fix a triple (P, ar, J.K), called a numerical predicate

collection, where P is a finite set of predicate names, ar assigns an arity ar(P) ∈ N⩾1 to
each P ∈ P, and J.K assigns a semantics JPK ⊆ Zar(P) to each P ∈ P. Examples of numerical
predicates are the equality predicate P= with JP=K = {(i, i) : i ∈ Z}, the comparison predicate
P⩽ with JP⩽K = {(i, j) : i, j ∈ Z, i ⩽ j}, or the prime number predicate Pprime with
JPprimeK = {i ∈ N : i is a prime number}. When analysing the running time of algorithms,
we will assume that machines have access to oracles for evaluating the numerical predicates.
That is, when given a P ∈ P and a tuple (i1, . . . , iar(P)) of integers, the oracle takes time O(1)
to answer if (i1, . . . , iar(P) ∈ JPK.

Let σ be a signature. The set of formulas and counting terms (for short: terms) of
FOC1[σ] is built according to the following rules.

(1) x1=x2 and R(x1, . . . , xar(R)) are formulas,1 where R ∈ σ, and x1, x2, . . . , xar(R) are
variables. We let free(x1=x2) := {x1, x2} and free

(
R(x1, . . . , xar(R))

)
:= {x1, . . . , xar(R)}.

(2) If φ and ψ are formulas, then ¬φ and (φ∨ψ) are also formulas. We let free(¬φ) := free(φ)
and free((φ ∨ ψ)) := free(φ) ∪ free(ψ).

(3) If φ is a formula and x ∈ vars, then ∃xφ is a formula. We let free(∃xφ) := free(φ) \ {x}.
(4) If φ is a formula and x̄ = (x1, . . . , xk) is a tuple of k pairwise distinct variables, for k ⩾ 0,

then #x̄.φ is a counting term. We let free
(
#(x1, . . . , xk).φ

)
:= free(φ) \ {x1, . . . , xk}.

(5) Every integer i ∈ Z is a counting term. We let free(i) = ∅.
(6) If t1 and t2 are counting terms, then (t1 + t2) and (t1 · t2) are also counting terms.

We let free
(
(t1 + t2)

)
:= free

(
(t1 · t2)

)
:= free(t1) ∪ free(t2).

(7) If P ∈ P, m = ar(P), and t1, . . . , tm are counting terms with
∣∣⋃m

i=1 free(ti)
∣∣ ⩽ 1, then

P(t1, . . . , tm) is a formula. We let free
(
P(t1, . . . , tm)

)
:=

⋃m
i=1 free(ti).

First-order logic FO[σ] is the fragment of FOC1[σ] built by using only the rules (1)–(3).
We write (φ ∧ ψ) and ∀xφ as shorthands for ¬(¬φ ∨ ¬ψ) and ¬∃x¬φ. For counting terms
t1 and t2, we write (t1 − t2) as a shorthand for

(
t1 + ((−1) · t2)

)
.

By FOC1, we denote the union of all FOC1[σ] for arbitrary signatures σ. This applies
analogously to FO. For FOC1 the semantics for the rules (1)–(3) are defined in the same
way as for FO; the semantics of the remaining rules are as follows. Let I = (A, β) be a
σ-interpretation, and let A denote the universe of A.

(4) J#x̄.φKI =
∣∣∣{(a1, . . . , ak) ∈ Ak : JφKI a1,...,ak

x1,...,xk = 1
}∣∣∣, where x̄ = (x1, . . . , xk).

(5) JiKI = i, for i ∈ Z.
(6) J(t1 + t2)KI = Jt1K

I + Jt2K
I and J(t1 · t2)KI = Jt1K

I · Jt2K
I .

1 in particular, if ar(R) = 0 then R() is a formula



Steffen van Bergerem and Nicole Schweikardt 7

(7) JP(t1, . . . , tm)KI = 1 if (Jt1KI
, . . . , JtmKI) ∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.

Examples of counting terms in FOC1 and their intuitive meaning can be found in Ex-
amples 1.1 and 1.2.

An expression is a formula or a counting term. For an expression ξ, we write ξ(z1, . . . , zk)
to indicate that free(ξ) ⊆ {z1, . . . , zk}. A sentence is a formula without free variables. A
ground term is a counting term without free variables.

For a formula φ and a σ-interpretation I, we write I |= φ to indicate that JφKI = 1.
Likewise, I ̸|= φ indicates that JφKI = 0. For a formula φ(x1, . . . , xk), a σ-structure A,
and a tuple ā = (a1, . . . , ak) ∈ Ak, we write A |= φ[ā] to indicate that (A, β) |= φ for all
assignments β with β(xi) = ai for all i ∈ [k]. Similarly, for a counting term t(x1, . . . , xk),
we write tA[ā] for the integer JtKI . In case that φ is a sentence and t is a ground term, we
shortly write A |= φ instead of A |= φ[()], and we write tA instead of tA[()].

The size |ξ| of an FOC1-expression ξ is defined as the length of the string representation
of ξ, where integers and variables are considered as having length 1. For m, q ∈ N, we write
FOC1[σ,m, q] to denote the set of all FOC1[σ]-expressions of size at most q and with at most
m free variables.

Hypotheses

Let A be a σ-structure with universe A, let t(x̄, ȳ) be an FOC1[σ]-term, let k := |x̄| ⩾ 1, let
ℓ := |ȳ| ⩾ 0, and let w̄ ∈ Aℓ. The hypothesis represented in A by the counting term t(x̄, ȳ)
and the parameter w̄ is defined as the mapping f : Ak → Z such that f(ā) = tA[ā, w̄] for
every ā ∈ Ak. That is, evaluating the counting term t in A while assigning the variables x̄
to the elements ā and assigning the variables ȳ to the elements w̄ yields the integer f(ā).
Henceforth, we will write hA

t,w̄ to denote this function f . For a set S ⊆ Ak × Z, we say that
hA

t,w̄ is consistent with S if and only if hA
t,w̄(ā) = i for all (ā, i) ∈ S.

3 Learning FOC1-Definable Aggregate Queries

Let σ, σ′ be signatures with σ ⊆ σ′, fix two numbers k ∈ N⩾1, ℓ ∈ N, and let T ⊆
FOC1[σ], T ′ ⊆ FOC1[σ′] be two sets of terms t(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ. We study the
following problem.

Learn-with-Precomputation(k, ℓ, T, T ′)
Precomputation: Given a σ-structure A with universe A, compute a σ′-expansion A′

of A and a lookup table whose size is independent of A.
Input: Training set S ⊆ Ak × Z.
Task: Return a term t′ ∈ T ′ and a tuple w̄′ ∈ Aℓ such that the hypothesis hA′

t′,w̄′ is
consistent with S. The algorithm may reject if there is no term t ∈ T and tuple w̄ ∈ Aℓ

such that the hypothesis hA
t,w̄ is consistent with S.

As described in the introduction, the precomputation phase can be viewed as building
an index structure for the given database A. Afterwards, this index structure can be
used each time that we receive as input a new training set S. The “learning phase” is
what happens after receiving such a set S; the desired output is a hypothesis that is
consistent with S. The main contribution of this paper is an efficient solution for the problem
Learn-with-Precomputation(k, ℓ, T, T ′). Before presenting the exact statement of our



8 Learning Aggregate Queries Defined by First-Order Logic with Counting

result (Theorem 3.1), recall from Section 1 the discussion on the benefits of local-access
algorithms. In the learning phase (i. e., when receiving a training set), the algorithm we
provide does not require random access to the database. Instead, it only needs local access,
i.e., it only accesses the neighbours of elements that it already holds in memory, initially
starting with the elements given in the training set. Here, “neighbours” refers to neighbours
in the Gaifman graph GA of the database A. Formally, local access means that the algorithm
can access an oracle that answers requests of the form “Is v̄ ∈ R(A)?” in constant time and
requests of the form “Return a list of all neighbours of v in A” in time linear in the number
of neighbours of v. As our machine model, we use a random-access machine (RAM) model,
and we consider running times under the uniform-cost measure. This allows us to store an
element of the database in a single memory cell and access it in a single computation step.

The main result of this paper is the following theorem.

▶ Theorem 3.1. Let σ be a signature, let k ∈ N⩾1, let ℓ, q ∈ N, let I be a finite set of integers,
and let T be the set of all FOC1[σ, k+ℓ, q]-terms that only use integers from I.

There is an extension σ′ of σ with relation symbols of arity ⩽ 1, and there is a number
q′ ∈ N such that, for the set T ′ of all FOC1[σ′, k+ℓ, q′]-terms, there is an algorithm that
solves the problem Learn-with-Precomputation(k, ℓ, T, T ′) as follows.

For a σ-structure A of size n and degree d, the precomputation to compute the σ′-expansion
A′ of A and the associated lookup table takes time dO(1)·n. Afterwards, upon input of a
training set S of size s, the algorithm uses only local access to A′, access to the lookup table,
and time (s+ d)O(1) to return either a hypothesis consistent with S or the answer “reject”.
Furthermore, the returned hypothesis can be evaluated in time dO(1), using only local access
to A′ and access to the lookup table.

In particular, this implies that when A comes from a class of σ-structures of polylogar-
ithmic degree, then the precomputation takes time quasi-linear in n (i. e., n · (logn)O(1)), a
hypothesis is found within time polynomial in s and polylogarithmic in n, and it can be
evaluated in time polylogarithmic in n.

We remark that the algorithm given in the proof of Theorem 3.1 is not meant to be
implemented and used in practice. Instead, Theorem 3.1 serves as a fundamental result
that shows the theoretic (and asymptotic) feasibility of learning aggregate queries definable
in FOC1. This is in line with previous work on the descriptive complexity of learning
[35, 33, 32, 29, 7, 10, 9, 8] and closely related work on so-called algorithmic meta theorems
(see, e. g., [30, 41]).

Before turning to the proof of Theorem 3.1, let us first briefly discuss the situation. In
the assumption of the theorem, we require the set I of integers occurring in terms of T to
be finite. However, note that we can still represent other integers in T by using rule (6)
for FOC1, that is, addition and multiplication. For example, we could let I be the set of
powers of 10 up to some bound, and we could obtain the numbers in between with rather
few additions and multiplications. Moreover, requiring I to be finite does not limit the use
of counting terms of the form #x̄.φ, which may evaluate to arbitrary integers based on the
given database. Meanwhile, we could let I contain (large) constants that are specific to the
field the data is coming from, which allows using them even if the bound q on the size of the
terms in T is small.

Since I is finite and the size of terms in T is bounded by q, up to equivalence, the set T
is finite. Thus, when given a σ-structure A with universe A and a training set S ⊆ Ak × Z,
in order to find a hypothesis that is consistent with S, we could proceed as follows. Loop
through all terms t(x̄, ȳ) in T . For each such term t, loop through all tuples w̄ ∈ Aℓ, and



Steffen van Bergerem and Nicole Schweikardt 9

check whether tA[v̄, w̄] = λ for every (v̄, λ) ∈ S. If so, stop and output t and w̄, indicating
that hA

t,w̄ is a hypothesis consistent with S. If no such hypothesis is found, then stop and
output “reject”. This obviously solves the learning problem. However, the time taken to loop
through all the w̄ ∈ Aℓ is polynomial in |A|, and it may not suffice to start with the vertices
given in the training set and repeatedly iterate over the neighbours of already found vertices.
Note that Theorem 3.1 yields a much more efficient algorithm, which runs in time polynomial
in the size of the training set and the degree of the structure. This can be substantially
faster than being polynomial in the size of the structure. We achieve this by moving over to
a larger signature σ′ and a suitable σ′-expansion A′ of A. This is done in such a way that
afterwards, we only have to loop through those tuples w̄ that are close to the tuples v̄ ∈ Ak

that actually occur in the training set S. Meanwhile, the number of terms to check is not
constant any more, but it depends on A. However, as we discuss in the proof of Theorem 3.1,
this number is polynomial in the degree of A, which yields the desired running time. The
exact details are provided by the following Lemma 3.2; this lemma is the main technical tool
that allows us to prove Theorem 3.1.

For formulating the lemma, we need the following notation. In a structure A with
universe A and of degree at most d, for every v ∈ A and any radius r ∈ N, we have∣∣NA

r (v)
∣∣ ⩽ νd(r) := 1 + d ·

∑
0⩽i<r(d− 1)i. Note that ν0(r) = 1, ν1(r) ⩽ 2, ν2(r) ⩽ 2r + 1,

and νd(r) ⩽ dr+1 for all r ∈ N and d ⩾ 3. In particular, for a fixed radius r ∈ N, νd(r) is
polynomial in d. For all r ∈ N, it is straightforward to construct an FO[σ]-formula distσ

⩽r(x, y)
such that for every σ-structure A and all v, w ∈ A, we have A |= distσ

⩽r[v, w] if and only if
distA(v, w) ⩽ r. To improve readability, we write distσ(x, y)⩽ r instead of distσ

⩽r(x, y), and
distσ(x, y)>r instead of ¬ distσ

⩽r(x, y).
Let r ∈ N. An FOC1[σ]-formula φ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local

(around x̄) if for every σ-structure A with universe A and every tuple v̄ = (v1, . . . , vk) ∈ Ak,
we have A |= φ[v̄] ⇐⇒ N A

r (v̄) |= φ[v̄]. A formula is local if it is r-local for some r ∈ N.
This notion of local formulas is identical with the one in [25]. It is very similar to the notion
of local formulas by Gaifman [26], although we use a semantic notion instead of Gaifman’s
syntactic notion.

For every k ∈ N⩾1, every graph G with vertex set [k], and every tuple x̄ = (x1, . . . , xk) of
k pairwise distinct variables, we consider the formula

δσ
G,r(x̄) :=

∧
{i,j}∈E(G)

distσ(xi, xj) ⩽ r ∧
∧

{i,j}̸∈E(G)

distσ(xi, xj) > r.

Note that A |= δσ
G,2r+1[v̄] means that the connected components of the r-neighbourhood

N A
r (v̄) correspond to the connected components of G. Clearly, the formula δσ

G,2r+1(x̄) is
r-local around its free variables x̄.

For two sets A,N with N ⊆ A, for k ∈ N, and two tuples w̄, w̄′ ∈ Ak, we write w̄ ⇛N w̄′

if wi = w′
i for all i ∈ [k] with wi ∈ N . Note that this notion is not symmetric: for tuples

w̄, w̄′ with w̄ ⇛N w̄′, the tuple w̄′ may still have an entry w′
i ∈ N for some i ∈ [k] while

wi ̸∈ N , so wi ̸= w′
i.

Our main technical ingredient for the proof of Theorem 3.1 is the following lemma. Note
that in the final statement of the lemma, the graphs H are connected and the formulas ψ are
local — both conditions are absolutely necessary for our proof of Theorem 3.1.

▶ Lemma 3.2. Let σ be a signature, let k ∈ N⩾1, let ℓ, q ∈ N, let t(x̄, ȳ) be an FOC1[σ, k+ℓ, q]-
term, and let It be the set of integers that occur in t.

There is an extension σt of σ with relation symbols of arity ⩽ 1, and there are numbers
qt, rt ∈ N such that, for every σ-structure A of size n and degree d, we can compute a σt-



10 Learning Aggregate Queries Defined by First-Order Logic with Counting

expansion At of A in time dO(1)·n such that the following is true, where A denotes the universe
of A. For all s ∈ N⩾1, for all v̄1, . . . , v̄s ∈ Ak, and for all w̄ ∈ Aℓ, there is an FOC1[σt, k+ℓ, qt]-
term t′(x̄, ȳ) such that for all w̄′ ∈ Aℓ with w̄ ⇛Nt

w̄′ for Nt := NA
(2rt+1)(ℓ+q)(v̄1, . . . , v̄s), we

have tA[v̄i, w̄] = (t′)A′ [v̄i, w̄
′] for all i ∈ [s].

Furthermore, t′ is a combination via addition and multiplication of integers in It,
of integers i with −1 ⩽ i ⩽

(
ℓ · νd

(
(2rt+1)q

))q, and of counting terms of the form
#z̄′.(ψ ∧ δσt

H,2rt+1) where ψ is an rt-local formula in FO[σt] and H is a connected graph.

We present the proof of Lemma 3.2 in Section 4. Intuitively, the lemma says that we can
translate a term t into a term t′ over an extended signature such that the new term only
needs those parameters that are close to the examples. By using this lemma, we can prove
Theorem 3.1 as follows.

Proof of Theorem 3.1. Let σ, k, ℓ, q, I, T be chosen according to the assumption of the
theorem.

Note that, up to logical equivalence, there are only finitely many terms in T . Thus, w.l.o.g.
we assume that T is finite and that all terms in T only use x1, . . . , xk, y1, . . . , yℓ, z1, . . . , zq

as variables. For each term t(x̄, ȳ) in T , we apply Lemma 3.2 to obtain an extension σt ⊇ σ

and numbers qt, rt ∈ N. W.l.o.g. we assume that the sets (σt \ σ)t∈T are pairwise disjoint.
Let σ′ :=

⋃
t∈T σt, let q′ := maxt∈T qt, and let T ′ be the set of all FOC1[σ′, k+ℓ, q′]-terms

using only x1, . . . , xk, y1, . . . , yℓ, z1, . . . , zq′ as variables. Furthermore, let r′ := maxt∈T rt.
Upon input of a σ-structure A of size n and degree d, for each t ∈ T we use Lemma 3.2

to compute a σt-expansion At of A in time dO(1)·n. We let A′ be the σ′-expansion of A
obtained by combining all the structures At for t ∈ T .

In addition, we also compute a lookup table that stores the value gA′ ∈ Z for every
ground term g that occurs in a term in T ′ and is of the form #z̄′.(ψ ∧ δσ′

H,2rt+1), where ψ is
an rt-local formula in FO[σ′] (for some t ∈ T ) and H is a connected graph.

▷ Claim 3.3. The lookup table can be computed in time dO(1)·n.

Proof. First note that the number of entries in the lookup table is constant and does not
depend on A, because the terms in T ′ have size at most q′ and only use variables from a fixed
set. Thus, it suffices to show that every single entry of the lookup table can be computed in
time dO(1)·n.

Let g be a ground term that occurs in a term in T ′ and is of the form #z̄′.(ψ ∧ δσ′

H,2rt+1),
where ψ is an rt-local formula in FO[σ′] (for some t ∈ T ) and H is a connected graph. Then
m := |z̄′| ⩽ q′. Let r̃ := (2r′ + 1)m.

Since H is a connected graph and (2rt + 1)m ⩽ (2r′ + 1)m = r̃, we have v2, . . . , vm ∈
NA′

r̃ (v1) for all v̄ := (v1, . . . , vm) ∈ Am with A′ |= δσ
H,2rt+1[v̄]. Hence, to compute gA′ ,

we can simply initialise the corresponding entry in the lookup table with 0, iterate over
all v1 ∈ A and all v2, . . . , vm ∈ NA′

r̃ (v1), and increase the entry in the lookup table by
1 if and only if A′ |= (ψ ∧ δσ′

H,2rt+1)[v̄] holds. For every fixed v1 ∈ A, we iterate over at
most νd(r̃)m−1 ∈ dO(1) tuples (v2, . . . , vm). Moreover, since ψ and δσ′

H,2rt+1 are rt-local,
for each tuple v̄ = (v1, v2, . . . , vm), it holds that A′ |= (ψ ∧ δσ′

H,2rt+1)[v̄] if and only if
N A′

rt
(v̄) |= (ψ ∧ δσ′

H,2rt+1)[v̄]. The latter can be checked by building the neighbourhood
structure around v̄ in time polynomial in d, and then evaluating the formula (of constant
size) on the neighbourhood structure by a brute-force algorithm in time polynomial in d.

All in all, we use dO(1)·n iterations, and every iteration takes time dO(1), so the overall
running time is dO(1)·n. ◁



Steffen van Bergerem and Nicole Schweikardt 11

Now let us assume that we receive an arbitrary training set S = {(v̄1, λ1), . . . , (v̄s, λs)} ⊆
Ak × Z of size s. Let T ∗ be the set of all those terms t′(x̄, ȳ) in T ′ that satisfy the following:
t′ is a combination via addition and multiplication of integers in I, of integers i with
−1 ⩽ i ⩽

(
ℓ · νd

(
(2r′+1)q

))q, and of counting terms of the form #z̄′.(ψ ∧ δσ′

H,2rt+1), where ψ
is an rt-local formula in FO[σ′] (for some t ∈ T ) and H is a connected graph.

▷ Claim 3.4. T ∗ is of size dO(1). Furthermore, for every t′(x̄, ȳ) ∈ T ∗, upon input of ā ∈ Ak

and b̄ ∈ Aℓ, we can compute (t′)A′ [ā, b̄] in time dO(1) with only local access to A′ and access
to the precomputed lookup table.

Proof. Since the terms in T ∗ have length at most q′, the variables come from a fixed finite
set, the signature σ′ has constant size, and the integers that may occur in a term in T ∗ come
from a set of size polynomial in d, the total number of terms in T ∗ is also polynomial in d.

For the evaluation of a term t′ in T ∗, we first consider counting terms t′(x̄′, ȳ′) of the
form #z̄′.(ψ ∧ δσ′

H,2rt+1), where k′ := |x̄′| ⩽ k, ℓ′ := |ȳ′| ⩽ ℓ, m′ := |z̄′| ⩽ q′, ψ is an rt-local
formula in FO[σ′] (for some t ∈ T ), and H is a connected graph with V (H) = [k′ + ℓ′ +m′].

In case that k′+ℓ′ = 0, the term t′ is a ground term. Hence, we can simply use the
precomputed lookup table to get the value (t′)A′ ∈ Z in time O(1).

In case that k′+ℓ′ > 0, let ā ∈ Ak′ and b̄ ∈ Aℓ′ . Since H is connected and rt ⩽ r′, for all
c̄ = (c1, . . . , cm′) with A′ |= δσ′

H,2rt+1[ā, b̄, c̄], we have c1, . . . , cm′ ∈ NA′

(2r′+1)m′(ā, b̄).
Thus, for r̃ := (2r′+1)m′ ⩽ (2r′+1)q′, we have

(t′)A′
[ā, b̄] =

∣∣∣{c̄ ∈ Am′
: A′ |= (ψ ∧ δσ′

H,2rt+1)[ā, b̄, c̄]
}∣∣∣

=
∣∣∣{c̄ ∈

(
NA′

r̃ (ā, b̄)
)m′

: A′ |= (ψ ∧ δσ′

H,2rt+1)[ā, b̄, c̄]
}∣∣∣ .

Furthermore, ψ and δσ′

H,2rt+1 are rt-local formulas, so A′ |= (ψ ∧ δσ′

2rt+1,H)[ā, b̄, c̄] if and only
if N A′

rt
(ā, b̄, c̄) |= (ψ ∧ δσ

2rt+1,H)[ā, b̄, c̄]. Since the size of the neighbourhood is polynomial in
d, the evaluation of (t′)A′ [ā, b̄] can be performed by evaluating an FO[σ′]-formula of constant
size on a structure of size polynomial in d for a number of assignments that is polynomial
in d. The evaluation of the formula can be done by building the neighbourhood structure
around ā, b̄ in time polynomial in d, and then evaluating the formula on the neighbourhood
structure by a brute-force algorithm in time polynomial in d.

Now let t′ be an arbitrary term in T ∗. Then, for all ā ∈ Ak, b̄ ∈ Aℓ, (t′)A′ [ā, b̄] can be
evaluated in time polynomial in d with only local access to A′ and access to the precomputed
lookup table by first evaluating every counting term in t′ as described above and then
combining the results and the integers occurring in t′ via a constant number of additions
and multiplications. ◁

To find a hypothesis that is consistent with S, we loop through all terms t′(x̄, ȳ) in T ∗.
For each such term t′, we loop through all tuples w̄′ ∈ N ℓ for N := NA

(2r′+1)(ℓ+q)(v̄1, . . . , v̄s).
We check if (t′)A′ [v̄i, w̄

′] = λi for all i ∈ [s]. If so, we stop and output t′ and w̄′, indicating
that hA′

t′,w̄′ is a hypothesis consistent with S. Otherwise, we stop and output “reject”.

▷ Claim 3.5. This algorithm uses only local access to A′ and access to the precomputed
lookup table, and it terminates within time (s + d)O(1). If it outputs a hypothesis, this
hypothesis is consistent with S. If it outputs “reject”, there is no term t ∈ T and tuple
w̄ ∈ Aℓ such that hA

t,w̄ is consistent with S.

Proof. The set N contains at most s · k · νd

(
(2r′+1)(ℓ+q)

)
elements, which is polynomial

in s and d. By Claim 3.4, T ∗ is of size dO(1). Thus, in total, we iterate over (s + d)O(1)



12 Learning Aggregate Queries Defined by First-Order Logic with Counting

hypotheses. For every hypothesis consisting of a term t′ ∈ T ∗ and a tuple w̄′ ∈ Aℓ, by
Claim 3.4, we can check in time dO(1)·s if (t′)A′ [v̄i, w̄

′] = λi for all i ∈ [s]. This check uses
only local access to A′ and access to the precomputed lookup table. This proves the first
statement of the claim. The second statement of the claim is obvious.

To prove the third statement of the claim, let us assume that there exists a term t ∈ T

and a tuple w̄ ∈ Aℓ such that hA
t,w̄ is consistent with S. For this particular choice of t and w̄,

and for the given tuples v̄1, . . . , v̄s, Lemma 3.2 yields an FOC1[σt, k+ℓ, qt]-term t′(x̄, ȳ) such
that for all w̄′ ∈ Aℓ with w̄ ⇛Nt

w̄′ for Nt := NA
(2rt+1)(ℓ+q)(v̄1, . . . , v̄s), we have

tA[v̄i, w̄] = (t′)A′
[v̄i, w̄

′] for all i ∈ [s].

Note that Nt ⊆ N . Hence, our algorithm will consider at least one w̄′ ∈ N ℓ such that
w̄ ⇛Nt

w̄′. Let us fix such a w̄′. All that remains to be done is to show that t′ ∈ T ∗ — this
will imply that our algorithm will eventually consider t′, w̄′ and then stop and output t′ and
w̄′, indicating that hA′

t′,w̄′ is a hypothesis consistent with S.
By our choice of σ′ and q′, we know that σ′ ⊇ σt and q′ ⩾ qt. Thus, t′ ∈ T ′. From

Lemma 3.2, we know that t′ is a combination via addition and multiplication of integers
in I, of integers i with −1 ⩽ i ⩽

(
ℓ · νd

(
(2rt+1)q

))q, and of counting terms of the form
#z̄′.(ψ ∧ δσ′

H,2rt+1), where ψ is an rt-local formula in FO[σt] and H is a connected graph. By
our particular choice of T ∗ and since r′ ⩾ rt, we obtain that t′ ∈ T ∗. This completes the
proof of Claim 3.5. ◁

In summary, the proof of Theorem 3.1 is complete. ◀

4 Proof of Lemma 3.2

The proof of Lemma 3.2 heavily relies on the following localisation theorem for FOC1. This
theorem is implicit in [34]; here we present it in a way analogous to [10, Theorem 4.7].

▶ Theorem 4.1 (Localisation Theorem for FOC1, [34]). Let k ∈ N, and let σ be a signature.
For every FOC1[σ]-formula φ(x1, . . . , xk), there is an extension σφ of σ with relation symbols
of arity ⩽ 1, and an FO[σφ]-formula φ′(x1, . . . , xk) that is a Boolean combination of local
formulas and statements of the form R() where R ∈ σφ has arity 0, for which the following
holds. There is an algorithm that, upon input of a σ-structure A of size n and degree d,
computes in time dO(1)·n a σφ-expansion Aφ of A such that for all v̄ ∈ Ak (where A denotes
the universe of A), we have Aφ |= φ′[v̄] ⇐⇒ A |= φ[v̄].

For the proof of Lemma 3.2, let σ, k, ℓ, q, t(x̄, ȳ), It be chosen according to the assumption
of the lemma. In particular, t(x̄, ȳ) is an FOC1[σ, k+ℓ, q]-term, and It is the set of integers
that occur in t.

We first note that it suffices to prove the statement of the lemma for the particular
case where t(x̄, ȳ) is of the form #z̄.φ(x̄, ȳ, z̄) for some FOC1[σ]-formula φ. Assume for now
that the statement of the lemma holds for all terms of this form, and consider an arbitrary
FOC1[σ, k+ℓ, q]-term t(x̄, ȳ) that is not of this form. Then, t is a combination via addition
and multiplication of integers from It and of counting terms u of the form #z̄.φ(x̄, ȳ, z̄) for
some FOC1[σ]-formula φ. Let U be the set of all these counting terms u occurring in t. We
assume that the statement of the lemma holds for each u ∈ U . Hence, for each u ∈ U , we
obtain an extension σu of σ with relation symbols of arity ⩽ 1 and numbers qu, ru ∈ N.
W.l.o.g. we assume that the sets (σu \ σ)u∈U are pairwise disjoint. Let σt :=

⋃
u∈U σu,

rt := maxu∈U ru, and qt := q · maxu∈U qu.



Steffen van Bergerem and Nicole Schweikardt 13

Upon input of a σ-structure A of size n and degree d, for each u ∈ U , the statement of
the lemma for u enables us to compute a σu-expansion Au of A in time dO(1)·n. We let At

be the σt-expansion of A obtained by combining all the structures Au for all counting terms
u ∈ U . Let A denote the universe of A.

When given v̄1, . . . , v̄s ∈ Ak and w̄ ∈ Aℓ, the statement of the lemma for u yields an
FOC1[σu, k+ℓ, qu]-term u′ for each u ∈ U . We choose t′ to be the term obtained from t by
replacing every occurrence of a counting term u ∈ U by the corresponding counting term u′.
Clearly t′ has length at most qt. It is not difficult to verify that t′ has the desired properties
stated in Lemma 3.2.

All that remains to be done is to prove the statement of the lemma for the particular
case where t(x̄, ȳ) is of the form #z̄.φ(x̄, ȳ, z̄) for some FOC1[σ]-formula φ. Given such a
term t, let m := |z̄|. Using Theorem 4.1, we obtain an extension σ′ := σφ of σ with relation
symbols of arity ⩽ 1 and an FO[σ′]-formula φ′(x̄, ȳ, z̄) that is a Boolean combination of local
formulas and statements of the form R(), where R ∈ σ′ has arity 0, for which the following
holds. Given a σ-structure A of size n and degree d and with universe A, we can compute a
σ′-expansion A′ := Aφ of A in time dO(1)·n such that for all ā ∈ Ak, b̄ ∈ Aℓ, and c̄ ∈ Am,
we have A |= φ[ā, b̄, c̄] ⇐⇒ A′ |= φ′[ā, b̄, c̄]. Thus, for t̃(x̄, ȳ) := #z̄.φ′(x̄, ȳ, z̄), we have
t̃A

′ [ā, b̄] = tA[ā, b̄] for all ā ∈ Ak, b̄ ∈ Aℓ.
From the particular shape of φ′, we obtain that there exists a number r′ ∈ N such

that φ′ is r′-local, i. e., for all ā ∈ Ak, b̄ ∈ Aℓ, c̄ ∈ Am, we have A′ |= φ′[ā, b̄, c̄] ⇐⇒
N A′

r′ (ā, b̄, c̄) |= φ′[ā, b̄, c̄].
Let G be the set of undirected graphs with vertex set [k + ℓ + m]. For every G ∈ G,

consider the formula φ′
G(x̄, ȳ, z̄) := φ′(x̄, ȳ, z̄) ∧ δσ′

G,2r′+1(x̄, ȳ, z̄) and the term uG(x̄, ȳ) :=
#z̄.φ′

G(x̄, ȳ, z̄). It is not difficult to verify that for all ā ∈ Ak, b̄ ∈ Aℓ, we have

tA[ā, b̄] = t̃A
′
[ā, b̄] =

∑
G∈G

(uG)A′
[ā, b̄].

To further decompose the terms uG, we use techniques similar to the ones used in [34] to
decompose terms into so-called connected local terms. With these, we obtain the following
technical lemma. The statement of this lemma as well as its proof are highly non-trivial. It
depends on a careful analysis of the connected components of undirected graphs with k+ℓ+m
nodes. Note that in the final statement of the lemma, the graphs H are connected and the
formulas ψ are local — both conditions are also stated in Lemma 3.2 and are absolutely
necessary for our proof of Theorem 3.1.

▶ Lemma 4.2. Let σ′ be a signature and let r′, k, ℓ,m ∈ N with k+ℓ+m ⩾ 1. Let φ′(x̄, ȳ, z̄)
be an r′-local FO[σ′]-formula with |x̄| = k, |ȳ| = ℓ, and |z̄| = m. Let G be the set of all
undirected graphs with vertex set [k + ℓ+m]. Let G ∈ G and let

uG(x̄, ȳ) := #z̄.
(
φ′(x̄, ȳ, z̄) ∧ δσ′

G,2r′+1(x̄, ȳ, z̄)
)
.

There is a number qG ∈ N such that, for every σ′-structure A′ of degree d and with universe A,
for all s ∈ N⩾1, for all v̄1, . . . , v̄s ∈ Ak, and for all w̄ ∈ Aℓ, there exists an FOC1[σ′, k+ℓ, qG]-
term u′

G(x̄, ȳ) such that the following is true for N := NA′

(2r′+1)(ℓ+m)(v̄1, . . . , v̄s).
For all w̄′ ∈ Aℓ with w̄ ⇛N w̄′, we have

(uG)A′
[v̄i, w̄] = (u′

G)A′
[v̄i, w̄

′] for all i ∈ [s].

Furthermore, u′
G is a combination via addition and multiplication of integers i with −1 ⩽ i ⩽(

ℓ · νd

(
(2r′+1)m

))m

and of counting terms of the form #z̄′.(ψ ∧ δσ′

H,2r′+1), where |z̄′| ⩽ |z̄|,
for a connected graph H and an r′-local formula ψ.



14 Learning Aggregate Queries Defined by First-Order Logic with Counting

Before proving Lemma 4.2, we first finish the proof of Lemma 3.2. We apply Lemma 4.2
to the term uG for all G ∈ G. For each G ∈ G this yields a number qG ∈ N. We choose
rt := r′ and σt := σ′.

For any σ-structure A, we let A′ be the σ′-expansion obtained as described above (by
applying Theorem 4.1 to the formula φ). When given tuples v̄1, . . . , v̄s ∈ Ak and w̄ ∈ Aℓ, we
obtain from Lemma 3.2 an FOC1[σ′, k+ℓ, qG]-term u′

G(x̄, ȳ), for every G ∈ G. This term u′
G is

a combination via addition and multiplication of integers i with −1 ⩽ i ⩽
(
ℓ·νd

(
(2r′+1)m

))m

and of counting terms of the form #z̄′.(ψ ∧ δσ′

H,2r′+1), where |z̄′| ⩽ |z̄|, for a connected graph
H and an r′-local formula ψ. We choose

t′(x̄, ȳ) :=
∑
G∈G

u′
G(x̄, ȳ)

and let qt :=
∑

G∈G(qG + 3). Note that t′ has length ⩽ qt and that m ⩽ q. It is not difficult
to verify that the term t′ has the desired properties stated in Lemma 3.2.

All that remains to be done to complete the proof of Lemma 3.2 is to prove Lemma 4.2.

Proof of Lemma 4.2. We prove the statement by induction on the number c of connected
components of G.

Consider the induction base c = 1, i. e., the graph G is connected. We choose qG to be
the length of the term uG. For choosing the term u′

G, we distinguish between 4 cases.
Case 1: k = ℓ = 0. In this case, we set u′

G := uG.
Case 2: k = 0 and ℓ > 0. In this case, we set u′

G := i for the particular number
i := (uG)A′ [w̄] ∈ Z. Since G is connected, all elements in a tuple c̄ ∈ Am with
A′ |= δσ′

G,2r′+1[w̄, c̄] have distance at most (2r′+1)m from w̄. Therefore, 0 ⩽ i ⩽(
ℓ · νd

(
(2r′+1)m

))m.
Case 3: k > 0 and w̄ ̸∈ N ℓ. Since G is connected, for all i ∈ [s] and all c̄ ∈ Am, it holds that

A′ ̸|= δσ′

G,2r′+1[v̄i, w̄, c̄]. Hence, for all i ∈ [s] we have (uG)A′ [v̄i, w̄] = 0. Therefore, we
can choose u′

G := 0.
Case 4: k > 0 and w̄ ∈ N ℓ. In this case, w̄ is the only tuple w̄′ that satisfies w̄ ⇛N w̄′.

Hence, we can choose u′
G := uG.

This completes the induction base.
We now turn to the induction step, where c > 1. We assume that the statement of

the lemma holds for all graphs G′ with fewer than c connected components. Let C1 be
the set of all vertices of G that are in the same connected component as the vertex 1. Let
C2 := V (G) \ C1. For each j ∈ {1, 2}, let G[Cj ] be the induced subgraph of G with vertex
set Cj . Clearly, G is the disjoint union of the graphs G[C1] and G[C2], and G[C1] has only
one connected component, and G[C2] has c−1 connected components. For j ∈ {1, 2}, let x̄j

be the tuple of variables of x̄ such that their index is contained in Cj , let ȳj be the tuple of
variables of ȳ such that their index +k is contained in Cj , and let z̄j be the tuple of variables
of z̄ such that their index +k+ℓ is contained in Cj .

By using the Feferman-Vaught Theorem (cf., [24, 44, 10]), we obtain a decomposition ∆ of
φ′(x̄, ȳ, z̄) w.r.t. (x̄1ȳ1z̄1; x̄2ȳ2z̄2). I. e., ∆ is a finite non-empty set of pairs of r′-local FO[σ′]-
formulas of the form (α(x̄1, ȳ1, z̄1), β(x̄2, ȳ2, z̄2)) such that for all ā ∈ Ak, b̄ ∈ Aℓ, c̄ ∈ Am,
we have A′ |= φ′[ā, b̄, c̄] ⇐⇒ there exists a pair (α, β) ∈ ∆ such that A′ |= α[ā1, b̄1, c̄1]
and A′ |= β[ā2, b̄2, c̄2]. Here, āj , b̄j , c̄j are defined analogously to x̄j , ȳj , z̄j for j ∈ {1, 2}.
Moreover, the pairs in ∆ are mutually exclusive, i. e., for all ā ∈ Ak, b̄ ∈ Aℓ, c̄ ∈ Am, there is
at most one pair (α, β) ∈ ∆ such that A′ |= α[ā1, b̄1, c̄1] and A′ |= β[ā2, b̄2, c̄2].



Steffen van Bergerem and Nicole Schweikardt 15

Let G¬G be the set of graphs H ̸= G with vertex set V (H) = [k+ℓ+m] and G[C1] = H[C1]
and G[C2] = H[C2]. Note that such graphs H have strictly fewer connected components
than G.

For every pair (α, β) ∈ ∆, we set

tα,β(x̄, ȳ) := #z̄.
(
α(x̄1, ȳ1, z̄1) ∧ β(x̄2, ȳ2, z̄2) ∧ δσ′

G,2r′+1(x̄, ȳ, z̄)
)
,

tα,1(x̄1, ȳ1) := #z̄1.
(
α(x̄1, ȳ1, z̄1) ∧ δσ′

G[C1],2r′+1(x̄1, ȳ1, z̄1))
)
,

tβ,2(x̄2, ȳ2) := #z̄2.
(
β(x̄2, ȳ2, z̄2) ∧ δσ′

G[C2],2r′+1(x̄2, ȳ2, z̄2))
)
,

tα,β,¬G(x̄, ȳ) :=
∑

H∈G¬G

#z̄.
(
α(x̄1, ȳ1, z̄1) ∧ β(x̄2, ȳ2, z̄2) ∧ δσ′

H,2r′+1(x̄, ȳ, z̄)
)
.

Since the pairs (α, β) ∈ ∆ are mutually exclusive, for all ā ∈ Ak, b̄ ∈ Aℓ, we have
(uG)A′ [ā, b̄] =

∑
(α,β)∈∆ tA

′

α,β [ā, b̄]. Furthermore, it is not difficult to verify that

tA
′

α,β [ā, b̄] = tA
′

α,1[ā1, b̄1] · tA
′

β,2[ā2, b̄2] − tA
′

α,β,¬G[ā, b̄],

where āj , b̄j are defined analogously to x̄j , ȳj for j ∈ {1, 2}.
Using the induction hypothesis, we apply the statement of the lemma to tα,1, tβ,2, and

to every summand of tα,β,¬G, and we call the resulting terms t′α,1, t′β,2, and t′α,β,¬G.
We set t′α,β(x̄, ȳ) := t′α,1(x̄1, ȳ1) · t′β,2(x̄2, ȳ2) − t′α,β,¬G(x̄, ȳ) and choose u′

G(x̄, ȳ) :=∑
(α,β)∈∆ t′α,β(x̄, ȳ).
It is not difficult to verify that the term u′

G has the desired properties. Moreover, the
size of u′

G can be bounded by a number qG that only depends on uG (but not on A′). This
completes the proof of Lemma 4.2. Hence, also the proof of Lemma 3.2 now is complete. ◀

5 Conclusion

We have studied the complexity of learning aggregate queries from examples. For this, we
have extended the framework for Boolean classification problems by Grohe and Turán [35]
to multiclass classification problems with integer-valued classifiers. In our setting, such
classifiers are represented by a pair (t, w̄) where t(x̄, ȳ) is a counting term in FOC1 and w̄ is
a tuple of elements in the universe A of the given database A.

Our main result shows that we can build a suitable index structure on the given database
A during a precomputation step whose running time is linear in the size and polynomial in
the degree of A. Afterwards, by utilising this index structure, whenever receiving as input
a new training set S, a classifier definable in FOC1 can be learned in time polynomial in
the degree of A and polynomial in the number of examples given in the training set. The
classifiers returned by our algorithm can be evaluated efficiently, in time polynomial in the
degree of A. Moreover, after having built the index structure, all our algorithms require only
local access to the database.

It seems conceivable that our results can be generalised to the more expressive logic
FOWA1 that operates on weighted structures [10], since the locality results obtained for this
logic in [10] are similar to the ones obtained for FOC1 in [34] and used here.

For the Boolean classification problem based on FO, [9] shows that the learning problem
is fixed-parameter tractable on nowhere dense classes. This result heavily relies on the
fixed-parameter tractability of the evaluation problem for FO on nowhere dense classes [31].
From [34] it is known that on nowhere dense classes also the evaluation problem for formulas
and terms of FOC1 is fixed-parameter tractable. We therefore think that FOC1 is a good



16 Learning Aggregate Queries Defined by First-Order Logic with Counting

candidate for a logic with a fixed-parameter tractable integer-valued classification problem
on classes of sparse structures.

In this paper, the task in the learning problem is to find an integer-valued hypothesis
that is consistent with the training set. Other publications on the considered framework for
Boolean classification problems also study settings in which one wants to find a hypothesis that
generalises well [33, 32, 29, 7, 10, 9, 8]. More specifically, they study probably approximately
correct (PAC) learning tasks in which the training examples are considered as being generated
from a (fixed, but unknown) probability distribution. The task is to find a hypothesis
that has a small expected error on new examples generated from the same distribution.
While PAC-learning algorithms for Boolean classification problems are typically based on
the empirical risk minimisation (ERM) principle [48], results in algorithmic learning theory
for multiclass classification [14, 21, 36] are based on different principles and even show that
the ERM principle in general does not suffice for PAC learning with an unbounded number
of classes [22]. Therefore, we expect it to be quite challenging to obtain PAC-learning results
for our framework of multiclass classification problems.

We plan to work on the raised questions in future work.

References

1 Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein, and Avi
Silberschatz. Learning and verifying quantified Boolean queries by example. In Proceedings of
the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, pages 49–60. ACM, 2013. doi:10.1145/2463664.2465220.

2 Howard Aizenstein, Tibor Hegedüs, Lisa Hellerstein, and Leonard Pitt. Complexity theoretic
hardness results for query learning. Comput. Complex., 7(1):19–53, 1998. doi:10.1007/
PL00001593.

3 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan. Characterizing
schema mappings via data examples. ACM Trans. Database Syst., 36(4):23:1–23:48, 2011.
doi:10.1145/2043652.2043656.

4 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. doi:
10.1007/BF00116828.

5 Pablo Barceló, Alexander Baumgartner, Victor Dalmau, and Benny Kimelfeld. Regularizing
conjunctive features for classification. J. Comput. Syst. Sci., 119:97–124, 2021. doi:10.1016/
j.jcss.2021.01.003.

6 Pablo Barceló and Miguel Romero. The complexity of reverse engineering problems for
conjunctive queries. In 20th International Conference on Database Theory, ICDT 2017,
volume 68 of LIPIcs, pages 7:1–7:17, 2017. doi:10.4230/LIPIcs.ICDT.2017.7.

7 Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, pages 1–13. IEEE,
2019. doi:10.1109/LICS.2019.8785811.

8 Steffen van Bergerem. Descriptive Complexity of Learning. PhD thesis, RWTH Aachen
University, Germany, 2023. doi:10.18154/RWTH-2023-02554.

9 Steffen van Bergerem, Martin Grohe, and Martin Ritzert. On the parameterized complexity of
learning first-order logic. In PODS 2022: International Conference on Management of Data,
pages 337–346. ACM, 2022. doi:10.1145/3517804.3524151.

10 Steffen van Bergerem and Nicole Schweikardt. Learning concepts described by weight aggrega-
tion logic. In 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, Ljubljana,
Slovenia (Virtual Conference), January 25-28, 2021, volume 183 of LIPIcs, pages 10:1–10:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.10.

https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1007/PL00001593
https://doi.org/10.1007/PL00001593
https://doi.org/10.1145/2043652.2043656
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.18154/RWTH-2023-02554
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.4230/LIPIcs.CSL.2021.10


Steffen van Bergerem and Nicole Schweikardt 17

11 Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. Learning path queries on graph databases.
In Proceedings of the 18th International Conference on Extending Database Technology, EDBT
2015, pages 109–120. OpenProceedings.org, 2015. doi:10.5441/002/edbt.2015.11.

12 Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Learning join queries from user
examples. ACM Trans. Database Syst., 40(4):24:1–24:38, 2016. doi:10.1145/2818637.

13 Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion. Interactive
mapping specification with exemplar tuples. ACM Trans. Database Syst., 44(3):10:1–10:44,
2019. doi:10.1145/3321485.

14 Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff. A characteriz-
ation of multiclass learnability. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, pages 943–955. IEEE, 2022. doi:10.1109/FOCS54457.2022.00093.

15 Balder ten Cate and Victor Dalmau. Conjunctive queries: Unique characterizations and exact
learnability. In 24th International Conference on Database Theory, ICDT 2021, volume 186 of
LIPIcs, pages 9:1–9:24, 2021. doi:10.4230/LIPIcs.ICDT.2021.9.

16 Balder ten Cate, Victor Dalmau, and Phokion G. Kolaitis. Learning schema mappings. ACM
Trans. Database Syst., 38(4):28:1–28:31, 2013. doi:10.1145/2539032.2539035.

17 Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. Active learning
of GAV schema mappings. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2018, pages 355–368. ACM, 2018.
doi:10.1145/3196959.3196974.

18 Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. ICE-based refinement
type discovery for higher-order functional programs. J. Autom. Reason., 64(7):1393–1418,
2020. doi:10.1007/s10817-020-09571-y.

19 William W. Cohen and C. David Page Jr. Polynomial learnability and inductive logic
programming: Methods and results. New Gener. Comput., 13(3&4):369–409, 1995. doi:
10.1007/BF03037231.

20 Andrew Cropper, Sebastijan Dumancic, Richard Evans, and Stephen H. Muggleton. In-
ductive logic programming at 30. Mach. Learn., 111(1):147–172, 2022. doi:10.1007/
s10994-021-06089-1.

21 Amit Daniely, Sivan Sabato, and Shai Shalev-Shwartz. Multiclass learning approaches:
A theoretical comparison with implications. In Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012, pages 494–502, 2012. URL: https://proceedings.neurips.cc/paper/2012/hash/
19f3cd308f1455b3fa09a282e0d496f4-Abstract.html.

22 Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In Maria-
Florina Balcan, Vitaly Feldman, and Csaba Szepesvári, editors, Proceedings of The 27th
Conference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, volume 35
of JMLR Workshop and Conference Proceedings, pages 287–316. JMLR.org, 2014. URL:
http://proceedings.mlr.press/v35/daniely14b.html.

23 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan. Horn-ICE
learning for synthesizing invariants and contracts. Proc. ACM Program. Lang., Volume 2(
Issue OOPSLA):131:1–131:25, 2018. doi:10.1145/3276501.

24 Solomon Feferman and Robert L. Vaught. The first-order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

25 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

26 Haim Gaifman. On local and non-local properties. In Jacques Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics,
pages 105–135. North-Holland, 1982. doi:10.1016/S0049-237X(08)71879-2.

27 Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A robust framework
for learning invariants. In Computer Aided Verification - 26th International Conference, CAV

https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.1145/2818637
https://doi.org/10.1145/3321485
https://doi.org/10.1109/FOCS54457.2022.00093
https://doi.org/10.4230/LIPIcs.ICDT.2021.9
https://doi.org/10.1145/2539032.2539035
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/BF03037231
https://doi.org/10.1007/BF03037231
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://proceedings.neurips.cc/paper/2012/hash/19f3cd308f1455b3fa09a282e0d496f4-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/19f3cd308f1455b3fa09a282e0d496f4-Abstract.html
http://proceedings.mlr.press/v35/daniely14b.html
https://doi.org/10.1145/3276501
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/S0049-237X(08)71879-2


18 Learning Aggregate Queries Defined by First-Order Logic with Counting

2014, volume 8559 of Lecture Notes in Computer Science, pages 69–87. Springer, 2014. URL:
https://doi.org/10.1007/978-3-319-08867-9_5, doi:10.1007/978-3-319-08867-9_5.

28 Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances. J. ACM,
57(2):6:1–6:37, 2010. doi:10.1145/1667053.1667055.

29 Emilie Grienenberger and Martin Ritzert. Learning definable hypotheses on trees. In 22nd
International Conference on Database Theory, ICDT 2019, pages 24:1–24:18, 2019. doi:
10.4230/LIPIcs.ICDT.2019.24.

30 Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 357–422. Amsterdam University Press, 2008.

31 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

32 Martin Grohe, Christof Löding, and Martin Ritzert. Learning MSO-definable hypotheses
on strings. In International Conference on Algorithmic Learning Theory, ALT 2017, pages
434–451, 2017. URL: http://proceedings.mlr.press/v76/grohe17a.html.

33 Martin Grohe and Martin Ritzert. Learning first-order definable concepts over structures of
small degree. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005080.

34 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2018, pages 253–266, 2018. doi:10.1145/3196959.3196970.

35 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory Comput. Syst., 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

36 Steve Hanneke, Shay Moran, and Qian Zhang. Universal rates for multiclass learning. In
The 36th Annual Conference on Learning Theory, COLT 2023, volume 195 of Proceedings
of Machine Learning Research, pages 5615–5681. PMLR, 2023. URL: https://proceedings.
mlr.press/v195/hanneke23a.html.

37 David Haussler. Learning conjunctive concepts in structural domains. Mach. Learn., 4:7–40,
1989. doi:10.1007/BF00114802.

38 Kouichi Hirata. On the hardness of learning acyclic conjunctive queries. In Algorithmic Learning
Theory, 11th International Conference, ALT 2000, volume 1968 of Lecture Notes in Computer
Science, pages 238–251. Springer, 2000. URL: https://doi.org/10.1007/3-540-40992-0_18,
doi:10.1007/3-540-40992-0_18.

39 Jörg-Uwe Kietz and Saso Dzeroski. Inductive logic programming and learnability. SIGART
Bull., 5(1):22–32, 1994. doi:10.1145/181668.181674.

40 Benny Kimelfeld and Christopher Ré. A relational framework for classifier engineering. ACM
Trans. Database Syst., 43(3):11:1–11:36, 2018. doi:10.1145/3268931.

41 Stephan Kreutzer. Algorithmic meta-theorems. In Javier Esparza, Christian Michaux, and
Charles Steinhorn, editors, Finite and Algorithmic Model Theory, volume 379 of London
Mathematical Society Lecture Note Series, pages 177–270. Cambridge University Press, 2011.

42 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–12. IEEE Computer
Society, 2017. doi:10.1109/LICS.2017.8005133.

43 Christof Löding, P. Madhusudan, and Daniel Neider. Abstract learning frameworks for
synthesis. In Tools and Algorithms for the Construction and Analysis of Systems – 22nd
International Conference, TACAS 2016, volume 9636 of Lecture Notes in Computer Science,
pages 167–185. Springer, 2016. URL: https://doi.org/10.1007/978-3-662-49674-9_10,
doi:10.1007/978-3-662-49674-9_10.

44 Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.
Log., 126(1-3):159–213, 2004. doi:10.1016/j.apal.2003.11.002.

https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/1667053.1667055
https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://doi.org/10.1145/3051095
http://proceedings.mlr.press/v76/grohe17a.html
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1007/s00224-003-1112-8
https://proceedings.mlr.press/v195/hanneke23a.html
https://proceedings.mlr.press/v195/hanneke23a.html
https://doi.org/10.1007/BF00114802
https://doi.org/10.1007/3-540-40992-0_18
https://doi.org/10.1007/3-540-40992-0_18
https://doi.org/10.1145/181668.181674
https://doi.org/10.1145/3268931
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1016/j.apal.2003.11.002


Steffen van Bergerem and Nicole Schweikardt 19

45 Denis Mayr Lima Martins. Reverse engineering database queries from examples: State-of-the-
art, challenges, and research opportunities. Inf. Syst., 83:89–100, 2019. doi:10.1016/j.is.
2019.03.002.

46 Stephen Muggleton. Inductive logic programming. New Gener. Comput., 8(4):295–318, 1991.
doi:10.1007/BF03037089.

47 Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. J.
Log. Program., 19/20:629–679, 1994. doi:10.1016/0743-1066(94)90035-3.

48 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, New York, NY, USA, 2014. doi:10.1017/
CBO9781107298019.

49 Robert H. Sloan, Balázs Szörényi, and György Turán. Learning Boolean functions with
queries. In Yves Crama and Peter L. Hammer, editors, Boolean Models and Methods in
Mathematics, Computer Science, and Engineering, pages 221–256. Cambridge University Press,
2010. doi:10.1017/cbo9780511780448.010.

50 Slawek Staworko and Piotr Wieczorek. Learning twig and path queries. In 15th International
Conference on Database Theory, ICDT 2012, pages 140–154. ACM, 2012. doi:10.1145/
2274576.2274592.

51 Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. Reverse engineering
aggregation queries. Proc. VLDB Endow., 10(11):1394–1405, 2017. URL: http://www.vldb.
org/pvldb/vol10/p1394-tan.pdf, doi:10.14778/3137628.3137648.

52 Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. REGAL+: reverse
engineering SPJA queries. Proc. VLDB Endow., 11(12):1982–1985, 2018. URL: http://www.
vldb.org/pvldb/vol11/p1982-tan.pdf, doi:10.14778/3229863.3236240.

53 Quoc Trung Tran, Chee Yong Chan, and Srinivasan Parthasarathy. Query reverse engineering.
VLDB J., 23(5):721–746, 2014. doi:10.1007/s00778-013-0349-3.

54 Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive SQL
queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, pages 452–466. ACM,
2017. doi:10.1145/3062341.3062365.

55 Yaacov Y. Weiss and Sara Cohen. Reverse engineering SPJ-queries from examples. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2017, pages 151–166. ACM, 2017. doi:10.1145/3034786.3056112.

56 He Zhu, Stephen Magill, and Suresh Jagannathan. A data-driven CHC solver. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, pages 707–721. ACM, 2018. doi:10.1145/3192366.3192416.

https://doi.org/10.1016/j.is.2019.03.002
https://doi.org/10.1016/j.is.2019.03.002
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/cbo9780511780448.010
https://doi.org/10.1145/2274576.2274592
https://doi.org/10.1145/2274576.2274592
http://www.vldb.org/pvldb/vol10/p1394-tan.pdf
http://www.vldb.org/pvldb/vol10/p1394-tan.pdf
https://doi.org/10.14778/3137628.3137648
http://www.vldb.org/pvldb/vol11/p1982-tan.pdf
http://www.vldb.org/pvldb/vol11/p1982-tan.pdf
https://doi.org/10.14778/3229863.3236240
https://doi.org/10.1007/s00778-013-0349-3
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3034786.3056112
https://doi.org/10.1145/3192366.3192416

	1 Introduction
	2 Preliminaries
	3 Learning FOC1-Definable Aggregate Queries
	4 Proof of Lemma 3.2
	5 Conclusion

