Learning Concepts Definable in First-Order Logic with Counting

Steffen van Bergerem RWTH Aachen University

Highlights 2019

background structure

graph / relational database

consistent parametric model

Learning Concepts Definable in FO

graph with **n** vertices maximum degree **d**

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Learning Concepts Definable in FO

graph with **n** vertices maximum degree **d** $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in time sublinear in n and polynomial in t.

Learning Concepts Definable in FOCN(P)

graph with *n* vertices maximum degree *d*

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in time sublinear in n and polynomial in t.

FOCN(P)

Adds counting on top of FO. Example: $\#(\bar{x}).\varphi(\bar{x}) = \#(\bar{y}).\psi(\bar{y}) + 4$ (Kuske and Schweikardt, 2017)

Learning Concepts Definable in FOCN(P)

graph with *n* vertices maximum degree *d*

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in time sublinear in n and polynomial in t.

FOCN(P)

Adds counting on top of FO. Example: $\#(\bar{x}).\varphi(\bar{x}) = \#(\bar{y}).\psi(\bar{y}) + 4$ (Kuske and Schweikardt, 2017)

Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

graph with **n** vertices maximum degree **d**

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

graph with **n** vertices maximum degree **d**

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

Theorem

Learning concepts definable in FO on structures of unbounded degree is not possible in sublinear time.

graph with **n** vertices maximum degree **d**

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

Theorem

Learning concepts definable in FO on structures of unbounded degree is not possible in sublinear time.

Theorem

Learning parameters for concepts definable in FO with quantifier rank q on structures of unbounded degree is not possible in time $n^{o(q)}$. (assuming ETH)

graph with **n** vertices maximum degree **d**

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Not presented: PAC-learning Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

Theorem

Learning concepts definable in FO on structures of unbounded degree is not possible in sublinear time.

Theorem

Learning parameters for concepts definable in FO with quantifier rank q on structures of unbounded degree is not possible in time $n^{o(q)}$. (assuming ETH)

 $((v_1, v_2), \mathsf{True}), ((v_2, v_1), \mathsf{False}), ((v_1, v_3), \mathsf{False})$

t examples

Not presented: PAC-learning Theorem

Concepts definable in FOCN(P) on structures of small degree can be learned in time sublinear in n and polynomial in t.

Other aggregators from SQL?

Theorem

Learning concepts definable in FO on structures of unbounded degree is not possible in sublinear time. Better lower bounds?

Theorem

Learning parameters for concepts definable in FO with quantifier rank q on structures of unbounded degree is not possible in time $n^{o(q)}$. (assuming ETH)