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Grohe and Ritzert (2017):
There is a consistent model-learning algorithm

for FO-formulas
that runs in sublinear time

on background structures of polylog. degree.

Idea: Use brute-force, Gaifman normal forms and
Gaifman locality.
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Introduction — From SQL to FOCN(P)

Database

+ SELECT EXISTS (
SELECT * FROM ‘ data ‘
WHERE color = ‘ red ‘ AND distance >5

) ;
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: True/False

Boolean

• We would like to learn something similar to SQL queries
• FO can be viewed as the logical core of SQL
• Aggregate functions are missing:

Count, Sum, Average, Min, Max

• Kuske and Schweikardt (2017):
FOCN(P), adds counting to FO
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Introduction to FOCN(P)

Counting terms: #ȳ.ϕ(ȳ), i ∈ Z, (t1 + t2), (t1 · t2), κ

FOCN(P)-formulas: rules from FO, P(t1, . . . , tar(P)), ∃κϕ

Example (κ-regular graph)

ϕ1 = ∃κ∀x (#(y).Exy
tedges(x)

= κ)

Example

ϕ2(x, κ) = #(y).Exy
tedges(x)

+#(y, z).(Exy ∧ Eyz) = κ+ 4
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Learnability Results

Theorem
Let k, ` ∈ N. There is an FOCN(P)-learning algorithm for the k-ary learning problem
over some finite background structure B such that:
1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with
certain complexity bounds, a tuple of integers λ̄ and a tuple in

(
U (B)

)`,
then the algorithm returns a hypothesis.

2. If the algorithm returns a hypothesis, then the hypothesis consists of an
FO-formula ϕ(x̄; ȳ) with a certain locality bound and a tuple v̄ ∈

(
U (B)

)` and
Jϕ(x̄; v̄)KB is consistent with the training sequence.

3. It runs in time (log n + t)O(1)dO((log d)c) with only local access to B.

4. The hypothesis can be evaluated in time (log n + t)O(1)dO((log d)c) with only
local access to B.

Proof idea: Use brute-force, Hanf normal forms and Hanf locality.
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Learnability Results — Proof idea

Theorem

X

1. If there is a consistent hypothesis consisting of an FOCN(P)-formula
with certain complexity bounds, a tuple of integers λ̄ and a tuple in
U (B)`, then the algorithm returns a hypothesis.

: Try all FOCN(P)-formulas with certain complexity bounds, all structure
parameters and number parameters.
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Learnability Results — Proof idea

Theorem

X

2. If the algorithm returns a hypothesis, then the hypothesis consists of
an FO-formula ϕ(x̄; ȳ) with a certain locality bound and a tuple
v̄ ∈ U (B)` and Jϕ(x̄; v̄)KB is consistent with the training sequence.

: Try all FOCN(P)-formulas with certain complexity bounds, all structure
parameters and number parameters.
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Learnability Results — Proof idea

Check all FOCN(P)-formulas with certain complexity bounds
all structure parameters
all number parameters

in Hanf normal form
with certain locality bounds

Boolean combinations of sphere-formulas
ϕ∗(x̄ ; ȳ) =

∨∨∨
i∈[t], ci=True

sphNr(ūi v̄∗)(x̄ȳ)
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sphNr(ūi v̄∗)(x̄ȳ)
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For a fixed background structure and a fixed number parameter, the
numerical conditions become constant.
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Boolean combinations of sphere-formulas

ϕ∗(x̄ ; ȳ) =
∨∨∨

i∈[t], ci=True
sphNr(ūi v̄∗)(x̄ȳ)

Use locality to reduce number of possible parameters.
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Learnability Results — Algorithm

Input:
Training sequence T = ((ū1, c1)), . . . , (ūt, ct)) ∈ T , d = ∆B,
local access to background structure B

1: for all v̄∗ ∈ (Nr′(T))
` do

2: ϕ∗(x̄ ; ȳ)←
∨

i∈[t], ci=True sphNr(ūi v̄∗)(x̄ ȳ)
3: consistent ← true
4: for i ∈ [t] with ci = false do
5: for j ∈ [t] with cj = true do
6: if Nr(ūi v̄∗) ∼= Nr(ūj v̄∗) then
7: consistent ← false
8: if consistent then
9: return (ϕ∗(x̄ ; ȳ), v̄∗)

10: reject
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Corollary
There is a consistent model-learning algorithm

for FOCN(P)-formulas
that runs in sublinear time

on background structures of polylog. degree.
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Non-Learnability Results

Theorem
There is no consistent sublinear formula-learning algorithm for
FO-formulas with only local access on background structures of
unbounded degree.

Proof idea: Sublinear-time algorithms cannot see the whole structure.
: Hide important parts of the structure from the algorithm.
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Non-Learnability Results

If the exponential-time hypothesis (ETH) holds:

Theorem
There is no consistent parameter-learning algorithm for first-order
formulas ϕ of quantifier rank at most q on background structures B with
no degree restriction running in time |B|o(q), i.e. that, given ϕ and a
sequence of training examples T , returns a tuple v̄ such that Jϕ(x̄ ; v̄)KB is
consistent with all training examples.

Proof idea: Solve q-Clique by learning the parameter.
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Conclusion

FOCN(P) extends FO and allows counting.

Results
There is …
• a consistent sublinear model-learning algorithm for FOCN(P)-formulas
on structures of polylog. degree.

• no consistent sublinear model-learning algorithm for FO-formulas with
only local access on structures of unbounded degree.

• no consistent parameter-learning algorithm for FO-formulas running in
time |B|o(q) on structures of unbounded degree.

Open Questions
• Other aggregators from SQL? (Sum, Average, Min, Max)
• Better lower bounds for unbounded degree?
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• Better lower bounds for unbounded degree?
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