Learning Concepts Definable in First-Order Logic with Counting

Steffen van Bergerem

RWTH Aachen University

LICS 2019

$$\varphi = \exists x \exists y \ Exy \qquad \longrightarrow \qquad \text{True/False}$$
Relational structure FO-formula Boolean

$$\varphi(x,y) = (x = y) \lor Exy \quad \Rightarrow \quad \text{True/False}$$
Relational structure FO-formula Boolean

$$\varphi(x; y) = (x = y) \lor Exy \quad \Rightarrow \quad \text{True/False}$$
Relational structure FO-formula Boolean

Introduction — FO Learning

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$

Examples

Introduction — FO Learning

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$

Examples

Task: learn a consistent model

$$\varphi(\mathbf{x}_1,\mathbf{x}_2;\mathbf{y})=?$$

Introduction — FO Learning

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$

Examples

Task: learn a consistent model

$$\varphi(\mathbf{x}_1,\mathbf{x}_2;\mathbf{y}) = \exists \mathbf{x}_3 \ (\mathbf{E}\mathbf{x}_1\mathbf{x}_2 \wedge \mathbf{E}\mathbf{x}_1\mathbf{x}_3 \wedge \mathbf{E}\mathbf{x}_2\mathbf{x}_3) \lor (\mathbf{x}_2 = \mathbf{y}), \quad \mathbf{y} = \mathbf{v}_3$$

Grohe and Ritzert (2017): There is a consistent model-learning algorithm for FO-formulas

that runs in sublinear time on background structures of polylog. degree.

Grohe and Ritzert (2017): There is a consistent model-learning algorithm for FO-formulas that runs in sublinear time on background structures of polylog. degree.

Grohe and Ritzert (2017): There is a consistent model-learning algorithm for FO-formulas that runs in sublinear time on background structures of polylog. degree.

Introduction — From SQL to FOCN(P)

- We would like to learn something similar to SQL queries
- FO can be viewed as the logical core of SQL
- Aggregate functions are missing: Count, Sum, Average, Min, Max
- Kuske and Schweikardt (2017): FOCN(P), adds counting to FO

Introduction — From SQL to FOCN(P)

- We would like to learn something similar to SQL queries
- FO can be viewed as the logical core of SQL
- Aggregate functions are missing: Count, Sum, Average, Min, Max
- Kuske and Schweikardt (2017): FOCN(P), adds counting to FC

Introduction — From SQL to FOCN(P)

- We would like to learn something similar to SQL queries
- FO can be viewed as the logical core of SQL
- Aggregate functions are missing: Count, Sum, Average, Min, Max
- Kuske and Schweikardt (2017): FOCN(P), adds counting to FO

There is a consistent model-learning algorithm for FO-formulas that runs in sublinear time on background structures of polylog. degree.

There is a consistent model-learning algorithm for FOCN(P)-formulas that runs in sublinear time on background structures of polylog. degree.

There is a consistent model-learning algorithm for FOCN(P)-formulas that runs in sublinear time on background structures of polylog. degree.

Introduction to FOCN(P)

Introduction to FOCN(P)

Counting terms: $\#\bar{y}.\varphi(\bar{y})$, $i \in \mathbb{Z}$, $(t_1 + t_2)$, $(t_1 \cdot t_2)$, κ FOCN(P)-formulas: rules from FO, $P(t_1, \ldots, t_{ar(P)})$, $\exists \kappa \varphi$

Example (κ -regular graph)

$$\varphi_1 = \exists \kappa \forall x (\underbrace{\#(y).Exy}_{t_{\text{edges}}(x)} = \kappa)$$

Example

$$\varphi_2(x,\kappa) = \underbrace{\#(y).Exy}_{t_{edges}(x)} + \#(y,z).(Exy \wedge Eyz) = \kappa + 4$$

There is a consistent model-learning algorithm for FOCN(P)-formulas that runs in sublinear time on background structures of polylog. degree.

Fixed

$$k = 2, \ \ell = 1$$

Constants

- B relational background structure
 - k length of each tuple we should classify
 - ℓ number of parameters we should learn

 $k = 2, \ \ell = 1$ Constants

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$ Examples

Given $\mathcal{T} = ((\bar{u}_1, c_1), \dots, (\bar{u}_t, c_t)), \quad u_i \in (U(\mathcal{B}))^k, \ c_i \in \{\text{True}, \text{False}\}$ training sequence of length t with tuples of length k

 $k = 2, \ \ell = 1$ Constants

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$ Examples

 $\begin{array}{ll} \text{If} & \text{there is a consistent model } (\varphi^*(\bar{x};\bar{y},\bar{\kappa}),\bar{v}^*,\bar{\lambda}^*), \\ \varphi^* \ \text{FOCN(P)-formula} & \\ \text{Return} & \varphi(\bar{\mathbf{x}};\bar{\mathbf{y}},\bar{\mathbf{\kappa}}) \ \text{FOCN(P)-formula,} & |x|=k, \ |y|=\ell \\ \bar{\mathbf{v}} \in \left(U(\mathcal{B})\right)^\ell, \ \bar{\boldsymbol{\lambda}} \in \{1,\ldots,|U(\mathcal{B})|\}^{|\bar{\kappa}|} \ \text{parameters} \\ \text{such that} & [\![\varphi(\bar{x};\bar{v},\bar{\lambda})]\!]^{\mathcal{B}} \ \text{is consistent with } \mathcal{T}, & \text{i.e. } [\![\varphi(\bar{u}_i;\bar{v},\bar{\lambda})]\!]^{\mathcal{B}}=c_i \end{array}$

 $\begin{array}{c} k=2, \ \ell=1\\ \text{Constants} \end{array}$

 $((v_1, v_2), False), ((v_2, v_3), True), ((v_3, v_4), True), ((v_4, v_5), False), ((v_1, v_3), True), ((v_2, v_4), True)$ Examples

 $\begin{array}{ll} \text{If} & \text{there is a consistent model } (\varphi^*(\bar{x};\bar{y},\bar{\kappa}),\bar{v}^*,\bar{\lambda}^*), \\ \varphi^* \; \text{FOCN}(\mathsf{P})\text{-formula} & \\ \text{Return} & \varphi(\bar{\mathbf{x}};\bar{\mathbf{y}},\bar{\kappa})\; \text{FOCN}(\mathsf{P})\text{-formula}, \quad |x|=k, \; |y|=\ell \\ \bar{\mathbf{v}} \in \left(U(\mathcal{B})\right)^{\ell}, \; \bar{\lambda} \in \{1,\ldots,|U(\mathcal{B})|\}^{|\mathcal{R}|} \; \text{parameters} \\ \text{such that} & [\![\varphi(\bar{x};\bar{v},\bar{\lambda})]\!]^{\mathcal{B}} \; \text{is consistent with } \mathcal{T}, \quad \text{i.e. } [\![\varphi(\bar{u}_i;\bar{v},\bar{\lambda})]\!]^{\mathcal{B}} = c_i \end{array}$

Theorem

Let $k, \ell \in \mathbb{N}$. There is an FOCN(P)-learning algorithm for the k-ary learning problem over some finite background structure \mathcal{B} such that:

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $(U(\mathcal{B}))^{\ell}$, then the algorithm returns a hypothesis.
- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in (U(\mathcal{B}))^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- 3. It runs in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .
- 4. The hypothesis can be evaluated in time $(\log n + t)^{O(1)} d^{O((\log d)^c)}$ with only local access to \mathcal{B} .

Theorem

Let $k, \ell \in \mathbb{N}$. There is an FOCN(P)-learning algorithm for the k-ary learning problem over some finite background structure \mathcal{B} such that:

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $(U(\mathcal{B}))^{\ell}$, then the algorithm returns a hypothesis.
- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in (U(\mathcal{B}))^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- 3. It runs in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .
- 4. The hypothesis can be evaluated in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .

Theorem

Let $k, \ell \in \mathbb{N}$. There is an FOCN(P)-learning algorithm for the k-ary learning problem over some finite background structure \mathcal{B} such that:

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $(U(\mathcal{B}))^{\ell}$, then the algorithm returns a hypothesis.
- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in (U(\mathcal{B}))^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- 3. It runs in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .
- 4. The hypothesis can be evaluated in time $(\log n + t)^{O(1)} d^{O((\log d)^c)}$ with only local access to \mathcal{B} .

Theorem

Let $k, \ell \in \mathbb{N}$. There is an FOCN(P)-learning algorithm for the k-ary learning problem over some finite background structure \mathcal{B} such that:

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $(U(\mathcal{B}))^{\ell}$, then the algorithm returns a hypothesis.
- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in (U(\mathcal{B}))^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- 3. It runs in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .
- 4. The hypothesis can be evaluated in time $(\log n + t)^{O(1)} d^{O((\log d)^c)}$ with only local access to \mathcal{B} .

Theorem

Let $k, \ell \in \mathbb{N}$. There is an FOCN(P)-learning algorithm for the k-ary learning problem over some finite background structure \mathcal{B} such that:

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $(U(\mathcal{B}))^{\ell}$, then the algorithm returns a hypothesis.
- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in (U(\mathcal{B}))^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- 3. It runs in time $(\log n + t)^{\mathcal{O}(1)} d^{\mathcal{O}((\log d)^c)}$ with only local access to \mathcal{B} .
- 4. The hypothesis can be evaluated in time $(\log n + t)^{O(1)} d^{O((\log d)^c)}$ with only local access to \mathcal{B} .

Theorem

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $U(\mathcal{B})^{\ell}$, then the algorithm returns a hypothesis.
- → Try all FOCN(P)-formulas with certain complexity bounds, all structure parameters and number parameters.

Theorem

- 1. If there is a consistent hypothesis consisting of an FOCN(P)-formula with certain complexity bounds, a tuple of integers $\bar{\lambda}$ and a tuple in $U(\mathcal{B})^{\ell}$, then the algorithm returns a hypothesis.
- → Try all FOCN(P)-formulas with certain complexity bounds, all structure parameters and number parameters.

Theorem

- 2. If the algorithm returns a hypothesis, then the hypothesis consists of an FO-formula $\varphi(\bar{x}; \bar{y})$ with a certain locality bound and a tuple $\bar{v} \in U(\mathcal{B})^{\ell}$ and $[\![\varphi(\bar{x}; \bar{v})]\!]^{\mathcal{B}}$ is consistent with the training sequence.
- → Try all FOCN(P)-formulas with certain complexity bounds, all structure parameters and number parameters.

Check all FOCN(P)-formulas with certain complexity bounds all structure parameters all number parameters

Check all FOCN(P)-formulas with certain complexity bounds all structure parameters all number parameters

Theorem (Kuske and Schweikardt 2017)

For every degree bound $d \in \mathbb{N}$ and every FOCN(*P*)-formula φ with certain complexity bounds there exists a *d*-equivalent formula ψ in Hanf normal form with a certain locality bound.

Check all FOCN(P)-formulas in Hanf normal form all structure parameters with certain locality bounds all number parameters

Theorem (Kuske and Schweikardt 2017)

For every degree bound $d \in \mathbb{N}$ and every FOCN(*P*)-formula φ with certain complexity bounds there exists a *d*-equivalent formula ψ in Hanf normal form with a certain locality bound.

Check all FOCN(P)-formulas in Hanf normal form all structure parameters with certain locality bounds all number parameters

Fact (Hanf normal form)

A formula is in Hanf normal form if it is a Boolean combination of sphere-formulas and numerical conditions.

Fact

Every sphere-formula is an FO-formula.

Fact

For a fixed background structure and a fixed number parameter, the numerical conditions become constant.

Check all Boolean combinations of sphere-formulas all structure parameters with certain locality bounds all number parameters

Fact (Hanf normal form)

A formula is in Hanf normal form if it is a Boolean combination of sphere-formulas and numerical conditions.

Fact

Every sphere-formula is an FO-formula.

Fact

For a fixed background structure and a fixed number parameter, the numerical conditions become constant.

Check all Boolean combinations of sphere-formulas all structure parameters with certain locality bounds all number parameters

Fact

A sphere-formula is an FO-formula that exactly characterizes the *r*-neighborhood of a tuple up to isomorphism.

$$\mathcal{B} \models \mathsf{sph}_{\mathcal{N}_r(\bar{u})}(\bar{v}) \iff \mathcal{N}_r(\bar{u}) \cong \mathcal{N}_r(\bar{v})$$

Check all Boolean combinations of sphere-formulas all structure parameters with certain locality bounds all number parameters

Fact

A sphere-formula is an FO-formula that exactly characterizes the *r*-neighborhood of a tuple up to isomorphism.

$$\mathcal{B} \models \mathsf{sph}_{\mathcal{N}_r(\bar{u})}(\bar{v}) \iff \mathcal{N}_r(\bar{u}) \cong \mathcal{N}_r(\bar{v})$$

Fact

There is a parameter \bar{v}^* such that $\mathcal{N}_r(\bar{u}_i\bar{v}^*) \ncong \mathcal{N}_r(\bar{u}_j\bar{v}^*)$ for all positive examples \bar{u}_i and negative examples \bar{u}_j .

Fact

A sphere-formula is an FO-formula that exactly characterizes the *r*-neighborhood of a tuple up to isomorphism.

$$\mathcal{B} \models \mathsf{sph}_{\mathcal{N}_r(\bar{u})}(\bar{v}) \iff \mathcal{N}_r(\bar{u}) \cong \mathcal{N}_r(\bar{v})$$

Fact

There is a parameter \bar{v}^* such that $\mathcal{N}_r(\bar{u}_i\bar{v}^*) \ncong \mathcal{N}_r(\bar{u}_j\bar{v}^*)$ for all positive examples \bar{u}_i and negative examples \bar{u}_j .

Use locality to reduce number of possible parameters.

Learnability Results — Algorithm

Input:

Training sequence $T = ((\bar{u}_1, c_1)), \dots, (\bar{u}_t, c_t)) \in \mathcal{T}$, $d = \Delta \mathcal{B}$, local access to background structure \mathcal{B} 1: for all $\bar{v}^* \in (N_{r'}(T))^\ell$ do 2: $\varphi^*(\bar{x}; \bar{y}) \leftarrow \bigvee_{i \in [t], c_i = \text{True}} \text{sph}_{\mathcal{N}_r(\bar{u}_i \bar{v}^*)}(\bar{x}\bar{y})$

- 3: $consistent \leftarrow true$
- 4: for $i \in [t]$ with $c_i =$ false do
- 5: for $j \in [t]$ with $c_j =$ true do
- 6: **if** $\mathcal{N}_r(ar{u}_iar{v}^*)\cong\mathcal{N}_r(ar{u}_jar{v}^*)$ **then**
- 7: $consistent \leftarrow false$
- 8: **if** *consistent* **then**
- 9: return $(\varphi^*(\bar{x};\bar{y}), \bar{v}^*)$

10: **reject**

Learnability Results — Algorithm

Input:

Training sequence $T = ((\bar{u}_1, c_1)), \dots, (\bar{u}_t, c_t)) \in \mathcal{T}$, $d = \Delta \mathcal{B}$, local access to background structure \mathcal{B}

1: for all $\bar{v}^* \in \left(N_{r'}(T)\right)^{\bar{\ell}}$ do

2:
$$\varphi^*(\bar{x}; \bar{y}) \leftarrow \bigvee_{i \in [t], c_i = \text{True}} \operatorname{sph}_{\mathcal{N}_r(\bar{u}_i \bar{v}^*)}(\bar{x}\bar{y})$$

3: $consistent \leftarrow true$

4: for
$$i \in [t]$$
 with $c_i =$ false do

5: for
$$j \in [t]$$
 with $c_j =$ true do

6: if
$$\mathcal{N}_r(\bar{u}_i\bar{v}^*)\cong\mathcal{N}_r(\bar{u}_j\bar{v}^*)$$
 then

7:
$$consistent \leftarrow false$$

9: return
$$(\varphi^*(\bar{x};\bar{y}), \bar{v}^*)$$

10: **reject**

Corollary

There is a consistent model-learning algorithm for FOCN(P)-formulas that runs in sublinear time on background structures of polylog. degree.

Theorem

There is no consistent sublinear formula-learning algorithm for FO-formulas with only local access on background structures of unbounded degree.

Proof idea: Sublinear-time algorithms cannot see the whole structure.
 → Hide important parts of the structure from the algorithm.

Theorem

There is no consistent sublinear formula-learning algorithm for FO-formulas with only local access on background structures of unbounded degree.

Proof idea: Sublinear-time algorithms cannot see the whole structure.

→ Hide important parts of the structure from the algorithm.

If the exponential-time hypothesis (ETH) holds:

Theorem

There is no consistent parameter-learning algorithm for first-order formulas φ of quantifier rank at most q on background structures \mathcal{B} with no degree restriction running in time $|\mathcal{B}|^{o(q)}$, i.e. that, given φ and a sequence of training examples T, returns a tuple \bar{v} such that $[\![\varphi(\bar{x};\bar{v})]\!]^{\mathcal{B}}$ is consistent with all training examples.

Proof idea: Solve *q*-CLIQUE by learning the parameter.

If the exponential-time hypothesis (ETH) holds:

Theorem

There is no consistent parameter-learning algorithm for first-order formulas φ of quantifier rank at most q on background structures \mathcal{B} with no degree restriction running in time $|\mathcal{B}|^{o(q)}$, i.e. that, given φ and a sequence of training examples T, returns a tuple \bar{v} such that $[\![\varphi(\bar{x};\bar{v})]\!]^{\mathcal{B}}$ is consistent with all training examples.

Proof idea: Solve *q*-CLIQUE by learning the parameter.

FOCN(P) extends FO and allows counting.

Results

There is ...

- a consistent sublinear model-learning algorithm for FOCN(P)-formulas on structures of polylog. degree.
- no consistent sublinear model-learning algorithm for FO-formulas with only local access on structures of unbounded degree.
- no consistent parameter-learning algorithm for FO-formulas running in time |B|^{o(q)} on structures of unbounded degree.

- Other aggregators from SQL? (Sum, Average, Min, Max)
- Better lower bounds for unbounded degree?

FOCN(P) extends FO and allows counting.

Results

There is ...

- a consistent sublinear model-learning algorithm for FOCN(P)-formulas on structures of polylog. degree.
- no consistent sublinear model-learning algorithm for FO-formulas with only local access on structures of unbounded degree.
- no consistent parameter-learning algorithm for FO-formulas running in time $|\mathcal{B}|^{o(q)}$ on structures of unbounded degree.

- Other aggregators from SQL? (Sum, Average, Min, Max)
- Better lower bounds for unbounded degree?

FOCN(P) extends FO and allows counting.

Results

There is ...

- a consistent sublinear model-learning algorithm for FOCN(P)-formulas on structures of polylog. degree.
- no consistent sublinear model-learning algorithm for FO-formulas with only local access on structures of unbounded degree.
- no consistent parameter-learning algorithm for FO-formulas running in time $|\mathcal{B}|^{o(q)}$ on structures of unbounded degree.

- Other aggregators from SQL? (Sum, Average, Min, Max)
- Better lower bounds for unbounded degree?

FOCN(P) extends FO and allows counting.

Results

There is ...

- a consistent sublinear model-learning algorithm for FOCN(P)-formulas on structures of polylog. degree.
- no consistent sublinear model-learning algorithm for FO-formulas with only local access on structures of unbounded degree.
- no consistent parameter-learning algorithm for FO-formulas running in time $|\mathcal{B}|^{o(q)}$ on structures of unbounded degree.

- Other aggregators from SQL? (Sum, Average, Min, Max)
- Better lower bounds for unbounded degree?

FOCN(P) extends FO and allows counting.

Results

There is ...

- a consistent sublinear model-learning algorithm for FOCN(P)-formulas on structures of polylog. degree.
- no consistent sublinear model-learning algorithm for FO-formulas with only local access on structures of unbounded degree.
- no consistent parameter-learning algorithm for FO-formulas running in time $|\mathcal{B}|^{o(q)}$ on structures of unbounded degree.

- Other aggregators from SQL? (Sum, Average, Min, Max)
- Better lower bounds for unbounded degree?