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Task: learn a consistent model
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S’

« We would like to learn something similar to SQL queries
+ FO can be viewed as the logical core of SQL

- Aggregate functions are missing:
Count, Sum, Average, Min, Max

« Kuske and Schweikardt (2017):
FOCN(P), adds counting to FO
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Introduction to FOCN(P)

Counting terms: #7y.0(y), i€Z, (th+t), (h-t), ~
FOCN(P)-formulas: rules from FO, P(ti,...,tar(p)), I

Example (x-regular graph)

p1 = IkVz(#(y).Ezy = k)

tedges(m)

Example

pa(z, k) = #(y).Bry + #(y, 2).(Ezy A Byz) = £ +4

tedges(m)
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1

Fixed B relational background structure
k length of each tuple we should classify
£ number of parameters we should learn
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1

((v1, 1), False), ((v2, vs), True), ((vs, va), True),
((va, vs), False), ((vi, vs), True), ((vz, va), True)

Given T = ((w, 1), (W, ), w€ (U(B))k, c; € {True, False}
training sequence of length ¢ with tuples of length &
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Learnability Results — Proof idea

Theorem

1. If there is a consistent hypothesis consisting of an FOCN(P)-formula \/
with certain complexity bounds, a tuple of integers X and a tuple in
U(B)¢, then the algorithm returns a hypothesis.

- Try all FOCN(P)-formulas with certain complexity bounds, all structure
parameters and number parameters.
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Learnability Results — Proof idea

Theorem
2. If the algorithm returns a hypothesis, then the hypothesis consists of
an ©(Z; y) with a certain locality bound and a tuple

v € U(B)" and [o(z; ©)]? is consistent with the training sequence.

> Tryall , all structure

parameters and number parameters.
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Learnability Results — Proof idea

Check all FOCN(P)-formulas [Nl s Riela11

all structure parameters with certain locality bounds

all number parameters

Fact (Hanf normal form)

A formula is in Hanf normal form if it is a of
sphere-formulas and numerical conditions.

Fact
Every sphere-formula is an FO-formula.

Fact

For a fixed background structure and a fixed number parameter, the

numerical conditions become constant.
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all structure parametérs with certain locality bounds
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Learnability Results — Proof idea

Check [ (x:5) = V' sphy; e (R7)

i€[t], ci=True

all structure parameters

Fact

A sphere-formula is an FO-formula that exactly
of a tuple up to isomorphism.

B | sphy ) (8) <= N (w) = N (0)

Fact
There is a parameter v* such that NV,.(a;v*) 2 N,.(u;v*) for all positive

examples u; and negative examples ;.
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Learnability Results — Proof idea

Check [ (x:5) = V' sphy; e (R7)

i€[t], c;=True
all structure parameters

Use locality to reduce number of possible parameters.
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Learnability Results — Algorithm

Input:
Training sequence T = ((41, ¢1)),---, (U, ¢t)) € T, d = AB,
local access to background structure B
1 forall v* € (N, (T))" do
2 0"(Z:7) < Ve, cimtrue SPhw, (o+) (Z7)

3: consistent < true

8: if consistent then

9: return (o*(z;7), v*)
10: reject
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Learnability Results — Algorithm

Input:
Training sequence T = ((41, ¢1)),---, (U, ¢t)) € T, d = AB,
local access to background structure B
1 forall v* € (N, (T))" do
2 ©*(Z;9) « Vie[t], c;=True Sph./\fr(aﬁ;*) (zy)
3 consistent < true
4 for i € [¢] with ¢; = false do
5 for j € [¢] with ¢; = true do
6: if Vo (u;v*) = N, (u;v*) then
7 consistent < false
8 if consistent then
9 return (o*(z;7), v*)
10: reject
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Corollary
There is a consistent model-learning algorithm
for FOCN(P)-formulas
that runs in sublinear time
on background structures of polylog. degree.
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Non-Learnability Results

Theorem
There is for
FO-formulas with only local access on background structures of

Proof idea: Sublinear-time algorithms cannot see the whole structure.
> Hide important parts of the structure from the algorithm.
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Non-Learnability Results

If the exponential-time hypothesis (ETH) holds:

Theorem

There is for first-order
formulas ¢ of quantifier rank at most ¢ on background structures B with
no degree restriction , l.e. that, given ¢ and a

sequence of training examples T, returns a tuple v such that [o(z;2)]? is
consistent with all training examples.
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If the exponential-time hypothesis (ETH) holds:

Theorem

There is for first-order
formulas ¢ of quantifier rank at most ¢ on background structures B with
no degree restriction , l.e. that, given ¢ and a

sequence of training examples T, returns a tuple v such that [o(z;2)]? is
consistent with all training examples.

Proof idea: Solve ¢-CLIQUE by learning the parameter.
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FOCN(P) extends FO and allows counting.

Results
Thereis ...
for FOCN(P)-formulas
on structures of
. for FO-formulas with
only local access on structures of .
for FO-formulas running in
time on structures of

Open Questions
- Other aggregators from SQL? (Sum, Average, Min, Max)
+ Better lower bounds for unbounded degree?
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