Learning Concepts Described by Weight Aggregation Logic

Steffen van Bergerem, Nicole Schweikardt

CSL 2021

Learning from Examples

Input: Labelled Examples

labelled tuples (v_1, \ldots, v_k)

Input: Labelled Examples

labelled tuples (v_1, \ldots, v_k)

Output: Concept

formula $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$, parameters w_1, \ldots, w_ℓ

Positive Examples Bob Emma

Negative Examples

Positive Examples Bob Emma

Negative Examples

Possible Concept

Carol's friends

Positive Examples Bob Emma

Negative Examples Dan

Possible Concept

Carol's friends

$$\varphi(x;y) = F(x,y)$$

parameter: Carol

Positive Examples (Alice, Bob) (Dan, Emma) (Carol, Dan)

Positive Examples (Alice, Bob) (Dan, Emma) (Carol, Dan)

2

Negative Examples

(Bob, Dan) (Alice, Carol)

Positive Examples (Alice, Bob) (Dan, Emma) (Carol, Dan)

2

Negative Examples (Bob, Dan)

(Alice, Carol)

Possible Concept

having a common friend who is not Emma

Positive Examples (Alice, Bob) (Dan, Emma) (Carol, Dan)

2

Negative Examples (Bob, Dan) (Alice, Carol)

Possible Concept

having a common friend who is not Emma

$$\varphi(x_1, x_2; y) = \exists z \left(F(x_1, z) \land F(x_2, z) \land z \neq y \right)$$

parameter: Emma

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation.

Learning Concepts in Sublinear Time

We only consider formulas of limited complexity (limited nesting depth)

- 1: for all formulas do
- 2: for all parameters do
- 3: **if** concept is consistent **then**
- 4: **return** concept
- 5: **reject**

Learning Concepts in Sublinear Time

We only consider formulas of limited complexity (limited nesting depth)

- 1: for all normal forms of formulas do
- 2: for all parameters do
- 3: **if** concept is consistent **then**
- 4: **return** concept
- 5: **reject**

Learning Concepts in Sublinear Time

We only consider formulas of limited complexity (limited nesting depth)

_ - - - - - - constantly many

- 1: for all normal forms of formulas do
- 2: for all parameters do
- 3: **if** concept is consistent **then**
- 4: **return** concept
- 5: **reject**
- 1) Gaifman normal form, uses enriched structure with quasilinear-time precomputation

We only consider formulas of limited complexity (limited nesting depth)

---- constantly many

- 1: for all normal forms of formulas do
- 2: for all parameters in a certain neighbourhood do
- 3: **if** concept is consistent **then**
- 4: **return** concept

5: **reject**

1) Gaifman normal form

We only consider formulas of limited complexity (limited nesting depth)

---- constantly many

- 1: for all normal forms of formulas do
- 2: for all parameters in a certain neighbourhood do
- 3: **if** concept is consistent **then**
- 4: **return** concept

5: **reject**

- 1) Gaifman normal form
- 2) local formulas and Feferman-Vaught decompositions

We only consider formulas of limited complexity (limited nesting depth)

---- constantly many

- 1: for all normal forms of formulas do
- 2: **for all** parameters **in a certain neighbourhood do**
- 3: **if** concept is consistent **then**
- 4: **return** concept

5: **reject**

small degree, small neighbourhood (polylogarithmic)

- 1) Gaifman normal form
- 2) local formulas and Feferman-Vaught decompositions

Weight Aggregation Logic

- relational structure
- + weights for weight symbols in ${f W}$

- relational structure
- + weights for weight symbols in W

Example

- $W = \{a, \ell\}$
- age $a(v) \in \mathbb{Z}$
- length of friendship $\ell(v, w) \in \mathbb{Z}$

Terms

•
$$t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

Terms

•
$$t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

•
$$\varphi_1(x) = \left(8 = \sum_y \ell(x, y) \cdot F(x, y)\right)$$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

•
$$\varphi_1(x) = \left(8 = \sum_y \ell(x, y) \cdot F(x, y)\right)$$

•
$$\varphi_2(x) = \left(\sum_y a(y).F(x,y) \leqslant \sum_y a(y).\neg F(x,y)\right)$$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

•
$$\varphi_1(x) = \left(8 = \sum_y \ell(x, y).F(x, y)\right)$$

•
$$\varphi_2(x) = \left(\sum_y a(y).F(x,y) \leqslant \sum_y a(y).\neg F(x,y)\right)$$

•
$$\varphi_3(x,y) = \left(\begin{array}{c} \#(z).(F(x,z) \wedge F(y,z)) \geqslant 2 \end{array} \right)$$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

Formulas

•
$$\varphi_1(x) = \left(8 = \sum_y \ell(x, y) \cdot F(x, y)\right)$$

•
$$\varphi_2(x) = \left(\sum_y a(y).F(x,y) \leqslant \sum_y a(y).\neg F(x,y)\right)$$

•
$$\varphi_3(x,y) = \left(\ \#(z).(F(x,z) \wedge F(y,z)) \geqslant 2 \right)$$

 $FOWA_1$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

Formulas

• $\varphi_1(x) = \left(8 = \sum_y \ell(x, y).F(x, y)\right)$

•
$$\varphi_2(x) = \left(\sum_y a(y).F(x,y) \leqslant \sum_y a(y).\neg F(x,y)\right)$$

•
$$\varphi_3(x,y) = \left(\begin{array}{c} \#(z). \left(F(x,z) \wedge F(y,z) \right) \geqslant 2 \end{array} \right)$$

FOWA₁

• only finite ring in $s = \sum w(y_1, \dots, y_k).\varphi$

Terms

• $t_1(x, y) = 5 \cdot a(x) - a(y) \cdot \ell(x, y)$

•
$$t_2(x) = \sum_y a(y)\ell(x,y).F(x,y)$$

Formulas

•
$$\varphi_1(x) = \left(8 = \sum_y \ell(x, y) \cdot F(x, y)\right)$$

• $\varphi_2(x) = \left(\sum_y a(y).F(x,y) \leqslant \sum_y a(y).\neg F(x,y)\right)$

•
$$\varphi_3(x,y) = \left(\ \#(z). \left(F(x,z) \wedge F(y,z) \right) \ \geqslant \ 2 \ \right)$$

FOWA₁

- only finite ring in $s = \sum w(y_1, \dots, y_k).\varphi$
- only one free variable in $P(t_1, \ldots, t_m)$

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation.

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation.

Localisation Theorem for $\ensuremath{\mathsf{FOWA}}\xspace_1$

Use local formula from FOW_1 on enriched structure instead.

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation.

Localisation Theorem for $FOWA_1$

Use local formula from FOW_1 on enriched structure instead.

3

Gaifman normal form for $\ensuremath{\mathsf{FOW}}_1$

Feferman-Vaught decompositions for FOW_1

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation. **+ PAC learning**

Localisation Theorem for $FOWA_1$

Use local formula from FOW_1 on enriched structure instead.

3

Gaifman normal form for $\ensuremath{\mathsf{FOW}}_1$

Feferman-Vaught decompositions for FOW_1

Theorem

Concepts definable in the weight aggregation logic FOWA₁ on weighted structures of small degree can be learned in sublinear time with quasilinear precomputation. **+ PAC learning**

Localisation Theorem for $\ensuremath{\mathsf{FOWA}}\xspace_1$

Use local formula from FOW_1 on enriched structure instead.

Gaifman normal form for $\ensuremath{\mathsf{FOW}}_1$

Feferman-Vaught decompositions for FOW_1

Future work

allow more free variables in $P(t_1, \ldots, t_m)$ in a guarded setting