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parameters w1, . . . ,w`

Icons made by Freepik from Flaticon

1/6



Learning from Examples on Relational Structures

+

+

–

Input: Labelled Examples
labelled tuples (v1, . . . , vk)

Output: Concept
formula ϕ(x1, . . . , xk ; y1, . . . , y`),
parameters w1, . . . ,w`

Icons made by Freepik from Flaticon

1/6



Learning from Examples on Relational Structures

Carol

Bob

Emma Alice

Dan

Icons made by Freepik from Flaticon

1/6



Learning from Examples on Relational Structures

Carol

Bob

Emma Alice

Dan
+

+

–

1 Positive Examples
Bob
Emma

Negative Examples
Dan

Possible Concept
Carol’s friends

Icons made by Freepik from Flaticon

1/6



Learning from Examples on Relational Structures

Carol

Bob

Emma Alice

Dan
+

+

–

1 Positive Examples
Bob
Emma

Negative Examples
Dan

Possible Concept
Carol’s friends

Icons made by Freepik from Flaticon

1/6



Learning from Examples on Relational Structures

Carol

Bob

Emma Alice

Dan
+

+

–

1 Positive Examples
Bob
Emma

Negative Examples
Dan

Possible Concept
Carol’s friends

ϕ(x; y) = F(x, y)

parameter: Carol
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Learning from Examples on Relational Structures

Carol

Bob

Emma Alice

Dan

2 Positive Examples
(Alice, Bob)
(Dan, Emma)
(Carol, Dan)

Negative Examples
(Bob, Dan)
(Alice, Carol)

Possible Concept
having a common friend who is not Emma

ϕ(x1, x2; y) = ∃z
(
F(x1, z)∧F(x2, z)∧z 6= y

)
parameter: Emma
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Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree
can be learned in sublinear time (in the size of the structure).

Theorem
Concepts definable in the weight aggregation logic FOWA1
on weighted structures of small degree can be learned in
sublinear time with quasilinear precomputation.
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Learning Concepts in Sublinear Time

We only consider formulas of limited complexity
(limited nesting depth)

constantly many

small degree, small neighbourhood
(polylogarithmic)

1: for all formulas do
2: for all parameters do
3: if concept is consistent then
4: return concept
5: reject

1)
2)
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small degree, small neighbourhood
(polylogarithmic)

1: for all normal forms of formulas do
2: for all parameters do
3: if concept is consistent then
4: return concept
5: reject

1) Gaifman normal form, uses enriched structure
with quasilinear-time precomputation
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Weighted Structures
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• relational structure
+ weights for weight symbols in W

Example

• W = {a, `}
• age a(v) ∈ Z

• length of friendship `(v,w) ∈ Z
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First-Order Logic with Weight Aggregation (FOWA)
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Terms
• t1(x, y) = 5 · a(x)− a(y) · `(x, y)

• t2(x) =
∑

y a(y)`(x, y).F(x, y)

Formulas

• ϕ1(x) =
(
8 =

∑
y `(x, y).F(x, y)

)
• ϕ2(x) =

(∑
ya(y).F(x, y) 6

∑
ya(y).¬F(x, y)

)
• ϕ3(x, y) =

(
#(z).

(
F(x, z) ∧ F(y, z)

)
> 2

)

FOWA1

• only finite ring in s =
∑

w(y1, . . . , yk).ϕ

• only one free variable in P(t1, . . . , tm)
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Learning Concepts Definable in Weight Aggregation Logic

Theorem
Concepts definable in the weight aggregation logic FOWA1
on weighted structures of small degree can be learned
in sublinear time with quasilinear precomputation. + PAC learning

1
Localisation Theorem for FOWA1
Use local formula from FOW1 on enriched structure instead.

2 Gaifman normal form for FOW1

3 Feferman-Vaught decompositions for FOW1

Future work
allow more free variables in P(t1, . . . , tm) in a guarded setting
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