On the Parameterized Complexity of Learning First-Order Logic

Steffen van Bergerem¹ Martin Grohe¹ Martin Ritzert² PODS 2022

¹RWTH Aachen University ²Aarhus University

1

Positive examples Bob Carol **Negative examples** Emma

1

Positive examples Bob Carol

Negative examples Emma

Possible hypothesis

Alice's friends

1

Positive examples Bob Carol

Negative examples Emma

Possible hypothesis

Alice's friends

$$
\varphi(x) = F(x, Alice)
$$

1

Positive examples Bob Carol

Negative examples Emma

Possible hypothesis

Alice's friends

$$
\varphi(x; y) = F(x, y)
$$

parameter: $w =$ Alice

Positive examples

(Alice, Emma) (Bob, Dan) (Carol, Emma)

2

Negative examples (Alice, Dan) (Bob, Emma)

Positive examples (Alice, Emma) (Bob, Dan) (Carol, Emma)

2

Negative examples (Alice, Dan) (Bob, Emma)

Possible hypothesis

having a common friend who is not Carol

Positive examples (Alice, Emma) (Bob, Dan) (Carol, Emma)

2

Negative examples (Alice, Dan) (Bob, Emma)

Possible hypothesis

having a common friend who is not Carol

$$
\varphi(x_1, x_2; y) = \exists z \ (F(x_1, z) \land F(x_2, z) \land z \neq y)
$$

parameter: $w =$ Carol

Main result:

In general, learning first-order logic is hard

Main result:

In general, learning first-order logic is hard, but there are a lot of tractable cases.

Learning Problem

Input

- $k, \ell, q \in \mathbb{N}$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

Learning Problem

Input

- $k, \ell, q \in \mathbb{N}$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

PAC learning / hypotheses that generalise well?

We can perform **PAC learning** if and only if we can solve the **Empirical Risk Minimisation Problem**.

We can perform **PAC learning** if and only if we can solve the **Empirical Risk Minimisation Problem**.

PAC learning: find hypotheses that generalise well

Empirical Risk Minimisation: (approximately) minimise the error we make on the training examples

Learning Problem

Input

- $k, \ell, q \in \mathbb{N}$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

PAC learning / hypotheses that generalise well? Empirical Risk Minimisation! 4/12

Empirical Risk Minimisation Problem

Input

- $k, \ell, q \in \mathbb{N}, \quad \varepsilon > 0$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

such that $\text{err}_T(\varphi, \bar{w}) \leqslant \varepsilon^* + \varepsilon$

PAC learning / hypotheses that generalise well? Empirical Risk Minimisation! 4/12

Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

- unary MSO-queries on strings (Grohe, Löding, and Ritzert, 2017)
- unary MSO-queries on trees (Grienenberger and Ritzert, 2017)

Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

- unary MSO-queries on strings (Grohe, Löding, and Ritzert, 2017)
- unary MSO-queries on trees (Grienenberger and Ritzert, 2017)
- FO with counting $(v, B., 2019)$
- FO with weight aggregation (v. B. and Schweikardt, 2021)

Beyond Structures of Small Degree

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Beyond structures of small degree / sublinear time:

Beyond Structures of Small Degree

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Beyond structures of small degree / sublinear time:

• k, ℓ, q are considered fixed

Beyond Structures of Small Degree

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Beyond structures of small degree / sublinear time:

- k, ℓ, q are considered fixed
- $\boldsymbol{\cdot}$ Algorithms running in time $|V(G)|^\ell$ would still be polynomial

[Parameterized Complexity of](#page-24-0) [Learning](#page-24-0)

Empirical Risk Minimisation Problem

Input

- $k, \ell, q \in \mathbb{N}, \quad \varepsilon > 0$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

such that $\text{err}_T(\varphi, \bar{w}) \leqslant \varepsilon^* + \varepsilon$

Empirical Risk Minimisation Problem

Input

- $k, \ell, q \in \mathbb{N}, \quad \varepsilon > 0$
- graph *G*
- \bullet labelled examples $T=\big((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\big)$

Parameter

 $k + \ell + q + 1/\varepsilon$

Output

- FO-query $\varphi(x_1, \ldots, x_k; y_1, \ldots, y_\ell)$ with $\text{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in V(G)$

such that $\text{err}_T(\varphi, \bar{w}) \leqslant \varepsilon^* + \varepsilon$

Fixed-Parameter Tractable (FPT)

running in time $f(k + \ell + q + 1/\varepsilon) \cdot |V(G)|^c$

Fixed-Parameter Tractable (FPT)

running in time $f(k + \ell + q + 1/\varepsilon) \cdot |V(G)|^c$

XP

 r unning in time $|V(G)|^{f(k+\ell+q+1/\varepsilon)}$

In general, learning first-order logic is hard

Theorem

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Under the assumption FPT $\neq W[1]$: =⇒ **Learning FO is not fixed-parameter tractable.**

Theorem

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Under the assumption FPT $\neq W[1]$: =⇒ **Learning FO is not fixed-parameter tractable.**

Proof idea

Reduction from model checking

Classes with a Tractable Model-Checking Problem

Classes with a Tractable Model-Checking Problem

Learning first-order logic on nowhere dense classes is tractable

Theorem

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Theorem

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Proof idea

• find hypothesis by trying all combinations of formulas and parameter tuples

Theorem

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Proof idea

- find hypothesis by trying all combinations of formulas and parameter tuples
- number of formulas only depends on k, ℓ, q

Theorem

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Proof idea

- find hypothesis by trying all combinations of formulas and parameter tuples
- number of formulas only depends on k, ℓ, q
- find small number of candidate parameter tuples to check

Theorem

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Proof idea

- find hypothesis by trying all combinations of formulas and parameter tuples
- number of formulas only depends on k, ℓ, q
- find small number of candidate parameter tuples to check
	- heavily depends on the splitter game
	- we control one player
	- vertices chosen by the other player are good parameters

Theorem (Hardness)

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Theorem (Hardness)

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Theorem (Tractability)

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Theorem (Hardness)

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Theorem (Tractability)

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Future Work

• Can we avoid increasing ℓ and q ?

Theorem (Hardness)

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Theorem (Tractability)

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Future Work

- Can we avoid increasing ℓ and q ?
- Are learning and model checking equivalent?

Theorem (Hardness)

Learning concepts definable in FO is hard for the parameterized complexity class AW[∗] *under parameterized Turing reductions.*

Theorem (Tractability)

For every nowhere dense class C *of graphs, learning concepts definable in FO is fixed-parameter tractable on* C*.*

Future Work

- Can we avoid increasing ℓ and q ?
- Are learning and model checking equivalent?
- Extend results to richer logics.

Hardness of Learning — Reduction from Model Checking

Solve model checking using learning problem

- evaluate formula recursively
- negation and Boolean connectives are easy

Hardness of Learning — Reduction from Model Checking

Solve model checking using learning problem

- evaluate formula recursively
- negation and Boolean connectives are easy
- use learning for existential quantification
- find small set of representatives that suffice to be checked

Hardness of Learning — Reduction from Model Checking

Solve model checking using learning problem

- evaluate formula recursively
- negation and Boolean connectives are easy
- use learning for existential quantification
- find small set of representatives that suffice to be checked
	- run learning algorithm for every pair of vertices, one as a positive and one as a negative example
	- use answers to find and remove vertices that are already represented
	- by Ramsey's Theorem, this works until the set is small

Tractability of Learning — Finding the Right Parameter Tuples

Tractability of Learning — Finding the Right Parameter Tuples

Tractability of Learning — Finding the Right Parameter Tuples

