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Negative examples
(Alice, Dan)
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Possible hypothesis
having a common friend who is not Carol
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Main result:

In general, learning first-order logic is hard

,
but there are a lot of tractable cases.
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Learning Problem

Input

• k, `, q ∈ N

, ε > 0

• graph G
• labelled examples T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
Output

• FO-query ϕ(x1, . . . , xk ; y1, . . . , y`) with qr(ϕ) 6 q
• parameters w1, . . . ,w` ∈ V (G)

such that errT (ϕ, w̄) 6 ε∗ + ε

PAC learning / hypotheses that generalise well?

Empirical Risk Minimisation!
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Fundamental Theorem of Statistical Learning Theory

We can perform PAC learning
if and only if we can solve the

Empirical Risk Minimisation Problem.

PAC learning: find hypotheses that generalise well

Empirical Risk Minimisation: (approximately) minimise the error we
make on the training examples
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Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time (in the size of the structure).

• unary MSO-queries on strings (Grohe, Löding, and Ritzert, 2017)
• unary MSO-queries on trees (Grienenberger and Ritzert, 2017)
• FO with counting (v. B., 2019)
• FO with weight aggregation (v. B. and Schweikardt, 2021)
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Beyond Structures of Small Degree

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time (in the size of the structure).

Beyond structures of small degree / sublinear time:

• k, `, q are considered fixed
• Algorithms running in time |V (G)|` would still be polynomial
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Parameterized Complexity of
Learning



Empirical Risk Minimisation Problem

Input

• k, `, q ∈ N, ε > 0

• graph G
• labelled examples T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)

Parameter
k + `+ q + 1/ε

Output

• FO-query ϕ(x1, . . . , xk ; y1, . . . , y`) with qr(ϕ) 6 q
• parameters w1, . . . ,w` ∈ V (G)

such that errT (ϕ, w̄) 6 ε∗ + ε
7/12



Empirical Risk Minimisation Problem

Input

• k, `, q ∈ N, ε > 0

• graph G
• labelled examples T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
Parameter

k + `+ q + 1/ε

Output

• FO-query ϕ(x1, . . . , xk ; y1, . . . , y`) with qr(ϕ) 6 q
• parameters w1, . . . ,w` ∈ V (G)

such that errT (ϕ, w̄) 6 ε∗ + ε
7/12



Parameterized Complexity
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In general, learning first-order logic is hard
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Hardness of Learning

Theorem
Learning concepts definable in FO is hard for the parameterized
complexity class AW[∗] under parameterized Turing reductions.

Under the assumption FPT 6= W[1]:
=⇒ Learning FO is not fixed-parameter tractable.

Proof idea
Reduction from model checking
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Learning first-order logic
on nowhere dense classes is tractable
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Tractability of Learning

Theorem
For every nowhere dense class C of graphs, learning concepts
definable in FO is fixed-parameter tractable on C.

Proof idea

• find hypothesis by trying all combinations of formulas and
parameter tuples

• number of formulas only depends on k, `, q

• find small number of candidate parameter tuples to check

• heavily depends on the splitter game
• we control one player
• vertices chosen by the other player are good parameters
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Conclusion

Theorem (Hardness)
Learning concepts definable in FO is hard for the parameterized
complexity class AW[∗] under parameterized Turing reductions.

Theorem (Tractability)
For every nowhere dense class C of graphs, learning concepts
definable in FO is fixed-parameter tractable on C.

Future Work

• Can we avoid increasing ` and q?
• Are learning and model checking equivalent?
• Extend results to richer logics.
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Hardness of Learning — Reduction from Model Checking

Solve model checking using learning problem

• evaluate formula recursively
• negation and Boolean connectives are easy

• use learning for existential quantification
• find small set of representatives that suffice to be checked

• run learning algorithm for every pair of vertices, one as a
positive and one as a negative example

• use answers to find and remove vertices that are already
represented

• by Ramsey’s Theorem, this works until the set is small
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Tractability of Learning — Finding the Right Parameter Tuples
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