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Supervised Learning

- learn from labelled examples
- algorithms with corresponding hypothesis specifications

Hidden
Input
Output

decision trees support-vector neural networks
machines
- goal of this talk: complexity-theoretic analysis of the problem

— problem: specification of hypotheses /
219
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Logical machine-learning framework

- introduced by Grohe and Turan (2002)
- inputs are labelled tuples from relational structure

Positive examples

(Alice, Emma)
(Bob, Dan)
(Carol, Emma)

Negative examples

(Alice, Dan)
(Bob, Emma)

- hypotheses are described using logics

@(z1, 32 y) = 32 (E(x1,2) A E(22,2) A 2 # )
parameter: Carol
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first-order logic (FO) can be decided in almost linear time on
nowhere dense graph classes.

- Algorithmic meta-theorems yield efficient algorithms for
certain kinds of logics on certain kinds of structures.
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- Grohe, Kreutzer, Siebertz (2014): properties definable in
first-order logic (FO) can be decided in almost linear time on
nowhere dense graph classes.

- Algorithmic meta-theorems yield efficient algorithms for
certain kinds of logics on certain kinds of structures.

- Goal: efficient algorithms for learning hypotheses described by
certain kinds of logics on certain kinds of structures.
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Learning Problem (for fixed k., ¢, ¢ € N)

Input
- relational structure A k-tuples

- labelled examples T = ((v1, A1), -, (Tm, Am))

Output
- FO-formula ¢(z1, ..., zi; 41, .-, yr) With qr(e) < ¢

- parameters wy, ..., w, € U(A)

with  errorr(p, w) < min errorr(¢*, w*)
prw*
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Learning Problem (for fixed k., ¢, ¢ € N)

Input
- relational structure A k-tuples
- labelled examples T = ((v1, A1), -, (Tm, Am))

ce>0

Output
- FO-formula ¢(z, ..., zi; 41, .-, yr) With qr(e) < ¢

- parameters wy, ..., w, € U(A)

with  errorr(p, w) < min errorp(¢*, w*) + ¢
prw*

Statistical learning theory: Empirical Risk Minimisation Problem

5/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

6/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time

6/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time
- unary MSO-formulas on strings in sublinear time

- unary MSO-formulas on trees in sublinear time

6/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time
- unary MSO-formulas on strings in sublinear time

- unary MSO-formulas on trees in sublinear time

more expressive logics
- FO with counting (v.B, LicS 2019)

- FO with weight aggregation
(v.B. and Schweikardt, CSL 2021) 6/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time
- unary MSO-formulas on strings in sublinear time

- unary MSO-formulas on trees in sublinear time

more expressive logics more complex structures
(v.B., Grohe, and Ritzert, PODS 2022)

- FO with counting (v.B, LicS 2019) , ,
- parameterised complexity

- FO with weight aggregation
(v.B. and Schweikardt, CSL 2021) * nowhere dense structures 6/19



Learning First-Order Logic

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time.

7/19



Learning First-Order Logic

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of can be
learned in sublinear time.

1: for all formulas ¢ do
2 for all parameters w do
3: compute error (g, W)

4: return hypothesis o, w with minimum error

7/19



Learning First-Order Logic

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time.

B constantly many

14
1: for all normal forms of formulas ¢ do
2 for all parameters w do
3: compute error (g, W)

4: return hypothesis o, w with minimum error

1) Gaifman normal form
7/19



Learning First-Order Logic

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time.

P constantly many small degree,
y _-----small neighbourhood
1: for all normal forms of formulas ¢ do e (polylogarithmic)
2: for all parameters w in a certain neighbourhood do

3: compute error (g, W)

4: return hypothesis o, w with minimum error

1) Gaifman normal form
2) Gaifman locality and Feferman-Vaught decompositions 7/19
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Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time
- unary MSO-formulas on strings in sublinear time

- unary MSO-formulas on trees in sublinear time

more expressive logics more complex structures
(v.B., Grohe, and Ritzert, PODS 2022)

- FO with counting (v.B, LicS 2019) , ,
- parameterised complexity

- FO with weight aggregation
(v.B. and Schweikardt, CSL 2021) * nowhere dense structures 8/19



Learning FO with Counting




Concepts definable in FOCN
on structures of degree at most (loglogn)*
can be learned in sublinear time,



Learning First-Order Logic with Counting

Theorem (v.B., 2023)
Concepts definable in FOCN on structures of degree at most
(loglogn)" can be learned in sublinear time.

- no Gaifman normal form for FOCN, only Hanf normal form

- number of formulas not constant any more

9/19



Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be O\{
learned in sublinear time (in the size of the structure).

- FO in general not in sublinear time
- unary MSO-formulas on strings in sublinear time

- unary MSO-formulas on trees in sublinear time

more expressive logics more complex structures
(v.B., Grohe, and Ritzert, PODS 2022)

- FO with counting (v.B, LicS 2019) , ,
- parameterised complexity

- FO with weight aggregation
(v.B. and Schweikardt, CSL 2021) * nowhere dense structures /19



Learning FO with Weight Aggregation




Concepts definable in FOWA,
on weighted structures of small degree
can be learned in sublinear time.



First-Order Logic with Weight Aggregation (FOWA)

Introduced in (v.B. and Schweikardt, CSL 2021)

Can build formulas such as

p(z) = (D aly <Y a(y)~E(z,y))

Y Y

Alice (33)
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Learning First-Order Logic with Weight Aggregation

Theorem (v.B. and Schweikardt, CSL 2021)

Concepts definable in FOWA, on weighted structures of small
degree can be learned in sublinear time with quasilinear-time
precomputation.
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Parameterised Complexity of Learning



In general, learning FO is hard.

But on nowhere dense classes,
learning FO is fixed-parameter tractable.



Parameterised Clique Problem

Input
- graph G
- keN

Parameter
k

Output
“Yes” if and only if G has a k-clique
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Parameterised Clique Problem

Input
- graph G
- keN

Parameter
k

Output
“Yes” if and only if G has a k-clique

Parameterised Complexity

- XP: running time n/(®)
- fixed-parameter tractable (FPT): running time f(k) - p(n)
14/19



Learning Problem (for fixed k., ¢, ¢ € N)

Input
- relational structure A
- labelled examples T = ((v1, A1), -, (U, Am))
ce>0

Output
- FO-formula ¢(z1, ..., 2k y1, .-, yo) With qr(p) < ¢
- parameters wy, ..., w; € U(A)

with  errorr(p, w) < min errorp(e*, w*) + ¢
(p*7ﬂ}*
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Learning Problem

Input
- relational structure A
- labelled examples T = ((21, A1), -, (Tm, Am))
ce>0, k/lqgeN
Parameter
k+0+q+1/e
Output
- FO-formula ¢(z1,. .., 2k y1, - -, ye) With qr(e) < ¢

- parameters wy, ..., wy € U(A)

with  errorr(p, w) < min errorr(p*, w*) + ¢
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Hardness of Learning

Theorem (v.B., Grohe, and Ritzert, PODS 2022)
Learning concepts definable in FO is at least as hard as the
model-checking problem for FO.

Under a common complexity-theoretic assumption (p-Clique ¢ FPT),
model checking is not fixed-parameter tractable.
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Classes with a Tractable Model-Checking Problem

Illustration by Felix Reidl Nowhere dense
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Tractability of Learning

Theorem (v.B., Grohe, and Ritzert, PODS 2022)
For every nowhere dense class C of graphs, learning concepts
definable in FO is fixed-parameter tractable on C.

Proof uses game characterisation of nowhere dense classes.

18/19



Tractability of Learning

Theorem (v.B., Grohe, and Ritzert, PODS 2022)
For every nowhere dense class C of graphs, learning concepts
definable in FO is fixed-parameter tractable on C.

Proof uses game characterisation of nowhere dense classes.

Theorem (v.B., 2023)
For every nowhere dense class C of structures, learning concepts
definable in FO is fixed-parameter tractable on C.

18/19



Conclusion

19/19



Conclusion

Theorem (v.B., LICS 2019; v.B., 2023)

Concepts definable in FOCN on structures of degree at most
(loglogn)“ can be learned in sublinear time.

Theorem (v.B. and Schweikardt, CSL 2021)

Concepts definable in FOWA; on weighted structures of small
degree can be learned in sublinear time with quasilinear-time
precomputation.

Theorem (v.B., Grohe, and Ritzert, PODS 2022; v.B., 2023)
For every nowhere dense class C of structures, learning concepts
definable in FO is fixed-parameter tractable on C.
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