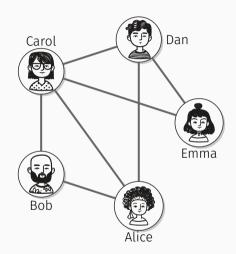
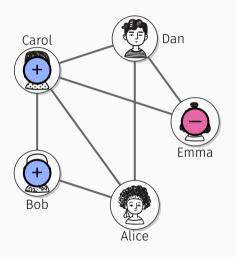
Descriptive Complexity of Learning

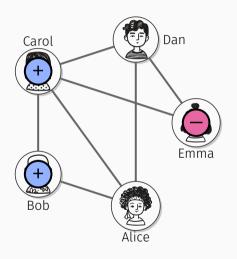
Steffen van Bergerem June 27, 2024





Positive examples
Bob
Carol

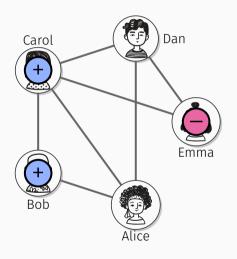
Negative examples Emma



Positive examples
Bob
Carol

Negative examples Emma

Possible hypothesis Alice's friends

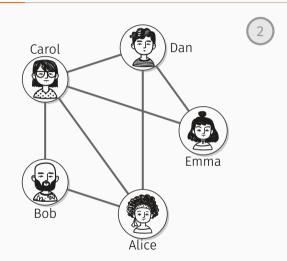


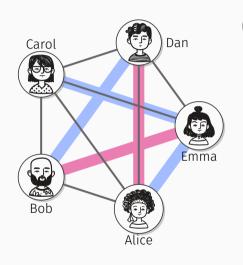
1

Positive examples
Bob
Carol

Negative examples Emma

Possible hypothesis Alice's friends $\varphi(x) = E(x,Alice)$





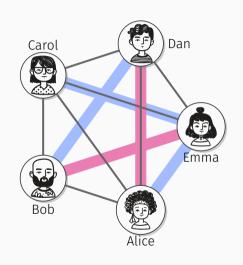
(2)

Positive examples

(Alice, Emma) (Bob, Dan) (Carol, Emma)

Negative examples

(Alice, Dan) (Bob, Emma)



Positive examples

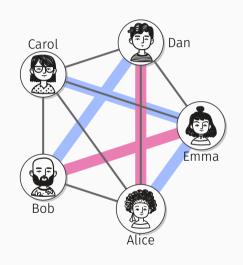
(Alice, Emma) (Bob, Dan) (Carol, Emma)

Negative examples

(Alice, Dan) (Bob, Emma)

Possible hypothesis

having a common friend who is not Carol



2

Positive examples

(Alice, Emma) (Bob, Dan) (Carol, Emma)

Negative examples

(Alice, Dan) (Bob, Emma)

Possible hypothesis

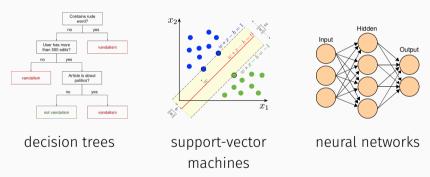
having a common friend who is not Carol $\varphi(x_1, x_2) = \exists z \ \big(E(x_1, z) \land E(x_2, z) \land z \neq \mathsf{Carol} \big)$

Supervised Learning

· learn from labelled examples

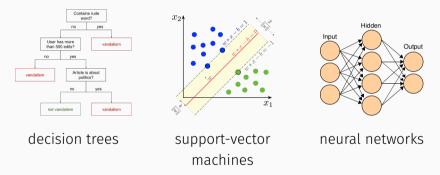
Supervised Learning

- learn from labelled examples
- algorithms with corresponding hypothesis specifications



Supervised Learning

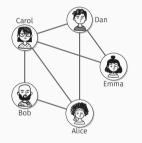
- learn from labelled examples
- algorithms with corresponding hypothesis specifications



- goal of this talk: complexity-theoretic analysis of the problem
- → problem: specification of hypotheses

Logical machine-learning framework

- introduced by Grohe and Turán (2002)
- inputs are labelled tuples from relational structure



Positive examples

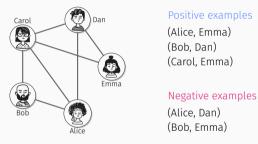
(Alice, Emma) (Bob, Dan) (Carol, Emma)

Negative examples

(Alice, Dan) (Bob, Emma)

Logical machine-learning framework

- introduced by Grohe and Turán (2002)
- inputs are labelled tuples from relational structure

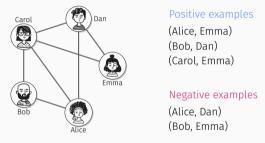


hypotheses are described using logics

$$\varphi(x_1, x_2) = \exists z \ (E(x_1, z) \land E(x_2, z) \land z \neq Carol)$$

Logical machine-learning framework

- introduced by Grohe and Turán (2002)
- inputs are labelled tuples from relational structure



hypotheses are described using logics

$$\varphi(x_1, x_2; y) = \exists z \ \big(E(x_1, z) \land E(x_2, z) \land z \neq y \big)$$

parameter: Carol

3/19

Algorithmic Meta-Theorems

Algorithmic Meta-Theorems

- Grohe, Kreutzer, Siebertz (2014): properties definable in first-order logic (FO) can be decided in almost linear time on nowhere dense graph classes.
- Algorithmic meta-theorems yield efficient algorithms for certain kinds of logics on certain kinds of structures.

Algorithmic Meta-Theorems

- Grohe, Kreutzer, Siebertz (2014): properties definable in first-order logic (FO) can be decided in almost linear time on nowhere dense graph classes.
- Algorithmic meta-theorems yield efficient algorithms for certain kinds of logics on certain kinds of structures.
- Goal: efficient algorithms for learning hypotheses described by certain kinds of logics on certain kinds of structures.

Learning Problem

Learning Problem (for fixed $k, \ell, q \in \mathbb{N}$)

Input

- \cdot relational structure \mathcal{A} \cdot labelled examples $T=\left((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\right)$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_{\ell} \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*)$$

Learning Problem (for fixed $k, \ell, q \in \mathbb{N}$)

Input

- \cdot relational structure \mathcal{A} \cdot labelled examples $T=\left((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\right)$
- $\varepsilon > 0$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_{\ell} \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*) + \varepsilon$$

Learning Problem (for fixed $k, \ell, q \in \mathbb{N}$)

Input

- · relational structure \mathcal{A} · labelled examples $T=\left((\bar{v}_1,\lambda_1),\ldots,(\bar{v}_m,\lambda_m)\right)$
- $\cdot \varepsilon > 0$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi) \leqslant q$
- parameters $w_1, \ldots, w_\ell \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*) + \varepsilon$$

Statistical learning theory: Empirical Risk Minimisation Problem

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

• FO in general <u>not</u> in sublinear time

(V. B., LICS 2019)

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

(v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

(v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)
- more expressive logics
 - FO with counting (v. B., LICS 2019)
 - FO with weight aggregation
 (v. B. and Schweikardt, CSL 2021)

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

(v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)
- more expressive logics
 - FO with counting (v. B., LICS 2019)
 - FO with weight aggregation
 (v. B. and Schweikardt, CSL 2021)

more complex structures

(v. B., Grohe, and Ritzert, PODS 2022)

- parameterised complexity
- nowhere dense structures

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time.

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time.

We only consider formulas of limited quantifier rank.

- 1: **for all** formulas φ **do**
- 2: **for all** parameters \bar{w} **do**
- 3: compute $\operatorname{error}_T(\varphi, \bar{w})$
- 4: ${f return}$ hypothesis arphi, ar w with minimum error

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time.

We only consider formulas of limited quantifier rank.

- ____ constantly many
- 1: **for all** normal forms of formulas φ **do**
- 2: **for all** parameters \bar{w} **do**
- 3: compute $\operatorname{error}_T(\varphi, \bar{w})$
- 4: **return** hypothesis $arphi, ar{w}$ with minimum error
- 1) Gaifman normal form

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time

We only consider formulas of limited quantifier rank.

```
- constantly many
                                                                 small degree.
                                                             small neighbourhood
1: for all normal forms of formulas \varphi do
                                                               (polylogarithmic)
      for all parameters \bar{w} in a certain neighbourhood do
```

- 2.
- compute error $T(\varphi, \bar{w})$ 3:
- 4: **return** hypothesis φ, \bar{w} with minimum error
- 1) Gaifman normal form
- 2) Gaifman locality and Feferman-Vaught decompositions

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

(v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)
- more expressive logics
 - FO with counting (v. B., LICS 2019)
 - FO with weight aggregation
 (v. B. and Schweikardt, CSL 2021)

more complex structures

(v. B., Grohe, and Ritzert, PODS 2022)

- parameterised complexity
- nowhere dense structures

Learning FO with Counting

Concepts definable in FOCN on structures of degree at most $(\log \log n)^c$

can be learned in sublinear time.

Learning First-Order Logic with Counting

Theorem (v. B., 2023)

Concepts definable in FOCN on structures of degree at most $(\log \log n)^c$ can be learned in sublinear time.

- no Gaifman normal form for FOCN, only Hanf normal form
- number of formulas not constant any more

Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

(v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)
- more expressive logics
 - FO with counting (v. B., LICS 2019)
 - FO with weight aggregation
 (v. B. and Schweikardt, CSL 2021)

more complex structures

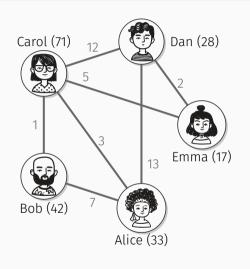
(v. B., Grohe, and Ritzert, PODS 2022)

- parameterised complexity
- nowhere dense structures

Learning FO with Weight Aggregation

Concepts definable in FOWA₁ on weighted structures of small degree can be learned in sublinear time.

First-Order Logic with Weight Aggregation (FOWA)



Introduced in (v. B. and Schweikardt, CSL 2021)

Can build formulas such as

$$\varphi(x) = \left(\sum_{y} a(y).E(x,y) \leqslant \sum_{y} a(y).\neg E(x,y)\right)$$

Learning First-Order Logic with Weight Aggregation

Theorem (v. B. and Schweikardt, CSL 2021)

Concepts definable in $FOWA_1$ on weighted structures of small degree can be learned in sublinear time with quasilinear-time precomputation.

Learning First-Order Logic with Weight Aggregation

Theorem (v. B. and Schweikardt, CSL 2021)

Concepts definable in $FOWA_1$ on weighted structures of small degree can be learned in sublinear time with quasilinear-time precomputation.

Hanf normal form

Gaifman normal form

Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)

Concepts definable in FO on structures of small degree can be learned in sublinear time (in the size of the structure).

FO in general <u>not</u> in sublinear time

v. B., LICS 2019)

- unary MSO-formulas on strings in sublinear time (Grohe, Löding, and Ritzert, 2017)
- unary MSO-formulas on trees in sublinear time (Grienenberger and Ritzert, 2019)
- more expressive logics
 - FO with counting (v. B., LICS 2019)
 - FO with weight aggregation
 (v. B. and Schweikardt, CSL 2021)

more complex structures

(v. B., Grohe, and Ritzert, PODS 2022)

- parameterised complexity
- nowhere dense structures

Parameterised Complexity of Learning

In general, learning FO is hard.

But on nowhere dense classes, learning FO is fixed-parameter tractable.

Parameterised Clique Problem

Input

- \cdot graph G
- $k \in \mathbb{N}$

Parameter

k

Output

"Yes" if and only if G has a k-clique

Parameterised Clique Problem

Input

- \cdot graph G
- $k \in \mathbb{N}$

Parameter

k

Output

"Yes" if and only if G has a k-clique

Parameterised Complexity

- XP: running time $n^{f(k)}$
- fixed-parameter tractable (FPT): running time $f(k) \cdot p(n)$

Learning Problem (for fixed $k, \ell, q \in \mathbb{N}$)

Input

- · relational structure ${\cal A}$
- · labelled examples $T = ((\bar{v}_1, \lambda_1), \dots, (\bar{v}_m, \lambda_m))$
- $\varepsilon > 0$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi)\leqslant q$
- parameters $w_1, \ldots, w_\ell \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*) + \varepsilon$$

Learning Problem

Input

- · relational structure ${\cal A}$
- · labelled examples $T = ((\bar{v}_1, \lambda_1), \dots, (\bar{v}_m, \lambda_m))$
- $\varepsilon > 0$, $k, \ell, q \in \mathbb{N}$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi)\leqslant q$
- parameters $w_1, \ldots, w_\ell \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*) + \varepsilon$$

Learning Problem

Input

- · relational structure ${\cal A}$
- · labelled examples $T = ((\bar{v}_1, \lambda_1), \dots, (\bar{v}_m, \lambda_m))$
- $\varepsilon > 0$, $k, \ell, q \in \mathbb{N}$

Parameter

$$k + \ell + q + 1/\varepsilon$$

Output

- FO-formula $\varphi(x_1,\ldots,x_k;y_1,\ldots,y_\ell)$ with $\operatorname{qr}(\varphi)\leqslant q$
- parameters $w_1, \ldots, w_\ell \in U(\mathcal{A})$

with
$$\operatorname{error}_T(\varphi, \bar{w}) \leqslant \min_{\varphi^*, \bar{w}^*} \operatorname{error}_T(\varphi^*, \bar{w}^*) + \varepsilon$$

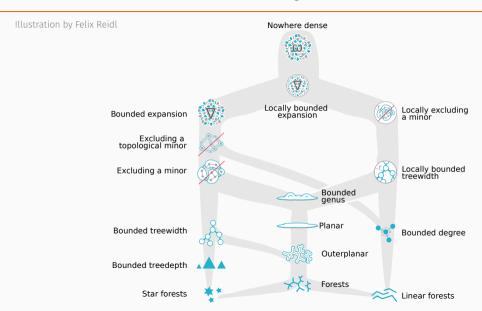
Hardness of Learning

Theorem (v. B., Grohe, and Ritzert, PODS 2022)

Learning concepts definable in FO is at least as hard as the model-checking problem for FO.

Under a common complexity-theoretic assumption (p-Clique ∉ FPT), model checking is <u>not</u> fixed-parameter tractable.

Classes with a Tractable Model-Checking Problem



Tractability of Learning

Theorem (v. B., Grohe, and Ritzert, PODS 2022)

For every nowhere dense class \mathcal{C} of graphs, learning concepts definable in FO is fixed-parameter tractable on \mathcal{C} .

Proof uses game characterisation of nowhere dense classes.

Tractability of Learning

Theorem (v. B., Grohe, and Ritzert, PODS 2022)

For every nowhere dense class C of graphs, learning concepts definable in FO is fixed-parameter tractable on C.

Proof uses game characterisation of nowhere dense classes.

Theorem (v. B., 2023)

For every nowhere dense class \mathcal{C} of structures, learning concepts definable in FO is fixed-parameter tractable on \mathcal{C} .

Conclusion

Conclusion

Theorem (v. B., LICS 2019; v. B., 2023)

Concepts definable in FOCN on structures of degree at most $(\log \log n)^c$ can be learned in sublinear time.

Theorem (v. B. and Schweikardt, CSL 2021)

Concepts definable in $FOWA_1$ on weighted structures of small degree can be learned in sublinear time with quasilinear-time precomputation.

Theorem (v. B., Grohe, and Ritzert, PODS 2022; v. B., 2023)

For every nowhere dense class C of structures, learning concepts definable in FO is fixed-parameter tractable on C.