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Supervised Learning

• learn from labelled examples

• algorithms with corresponding hypothesis specifications

decision trees support-vector
machines

Output

Hidden

Input

neural networks

• goal of this talk: complexity-theoretic analysis of the problem
→ problem: specification of hypotheses

Image sources via Wikimedia Commons: CAlbon (WMF) CC BY-SA 4.0, Larhmam CC BY-SA 4.0, Cburnett CC BY-SA 3.0
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Logical machine-learning framework

• introduced by Grohe and Turán (2002)
• inputs are labelled tuples from relational structure
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(
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• hypotheses are described using logics
ϕ(x1, x2; y) = ∃z

(
E(x1, z) ∧ E(x2, z) ∧ z 6= y

)
parameter: Carol
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Algorithmic Meta-Theorems

• Grohe, Kreutzer, Siebertz (2014): properties definable in
first-order logic (FO) can be decided in almost linear time on
nowhere dense graph classes.

• Algorithmic meta-theorems yield efficient algorithms for
certain kinds of logics on certain kinds of structures.

• Goal: efficient algorithms for learning hypotheses described by
certain kinds of logics on certain kinds of structures.
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Learning First-Order Logic



Learning Problem

Input

• relational structure A
• labelled examples T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)

• ε > 0

, k, `, q ∈ N

Output

• FO-formula ϕ(x1, . . . , xk ; y1, . . . , y`) with qr(ϕ) 6 q
• parameters w1, . . . ,w` ∈ U (A)

with errorT (ϕ, w̄) 6 min
ϕ∗,w̄∗

errorT (ϕ∗, w̄∗)

k-tuples
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Statistical learning theory: Empirical Risk Minimisation Problem
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Learning Concepts Definable in Logics

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time (in the size of the structure).

• FO in general not in sublinear time
(v. B., LICS 2019)

• unary MSO-formulas on strings in sublinear time
(Grohe, Löding, and Ritzert, 2017)

• unary MSO-formulas on trees in sublinear time
(Grienenberger and Ritzert, 2019)

1 more expressive logics
• FO with counting (v. B., LICS 2019)

• FO with weight aggregation
(v. B. and Schweikardt, CSL 2021)

2 more complex structures
(v. B., Grohe, and Ritzert, PODS 2022)

• parameterised complexity
• nowhere dense structures
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Learning First-Order Logic

Theorem (Grohe and Ritzert, 2017)
Concepts definable in FO on structures of small degree can be
learned in sublinear time.

We only consider formulas of limited quantifier rank.

constantly many small degree,
small neighbourhood
(polylogarithmic)1: for all formulas ϕ do

2: for all parameters w̄ do
3: compute errorT (ϕ, w̄)

4: return hypothesis ϕ, w̄ with minimum error

1)
2) Gaifman locality and Feferman-Vaught decompositions
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Learning FO with Counting



Concepts definable in FOCN
on structures of degree at most

(
log log n

)c

can be learned in sublinear time.
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Learning First-Order Logic with Counting

Theorem (v. B., 2023)
Concepts definable in FOCN on structures of degree at most(
log log n

)c can be learned in sublinear time.

• no Gaifman normal form for FOCN, only Hanf normal form
• number of formulas not constant any more
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Learning FO with Weight Aggregation



Concepts definable in FOWA1
on weighted structures of small degree

can be learned in sublinear time.
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First-Order Logic with Weight Aggregation (FOWA)

7

1

12

2

13

3

5

Alice (33)

Bob (42)

Carol (71) Dan (28)

Emma (17)

Introduced in (v. B. and Schweikardt, CSL 2021)

Can build formulas such as

ϕ(x) =
(∑

y
a(y).E(x, y) 6

∑
y

a(y).¬E(x, y)
)

Icons made by Freepik from Flaticon
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Learning First-Order Logic with Weight Aggregation

Theorem (v. B. and Schweikardt, CSL 2021)
Concepts definable in FOWA1 on weighted structures of small
degree can be learned in sublinear time with quasilinear-time
precomputation.
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Parameterised Complexity of Learning



In general, learning FO is hard.

But on nowhere dense classes,
learning FO is fixed-parameter tractable.

13/19



Parameterised Clique Problem

Input

• graph G
• k ∈ N

Parameter
k

Output
“Yes” if and only if G has a k-clique

Parameterised Complexity
• XP: running time nf (k)

• fixed-parameter tractable (FPT): running time f (k) · p(n)
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Learning Problem (for fixed k, `, q ∈ N)
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• relational structure A
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Hardness of Learning

Theorem (v. B., Grohe, and Ritzert, PODS 2022)
Learning concepts definable in FO is at least as hard as the
model-checking problem for FO.

Under a common complexity-theoretic assumption (p-Clique 6∈ FPT),
model checking is not fixed-parameter tractable.
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Classes with a Tractable Model-Checking Problem

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense

∇∇
r

ωω

Illustration by Felix Reidl
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Tractability of Learning

Theorem (v. B., Grohe, and Ritzert, PODS 2022)
For every nowhere dense class C of graphs, learning concepts
definable in FO is fixed-parameter tractable on C.

Proof uses game characterisation of nowhere dense classes.

Theorem (v. B., 2023)
For every nowhere dense class C of structures, learning concepts
definable in FO is fixed-parameter tractable on C.
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Conclusion

Theorem (v. B., LICS 2019; v. B., 2023)
Concepts definable in FOCN on structures of degree at most(
log log n

)c can be learned in sublinear time.

Theorem (v. B. and Schweikardt, CSL 2021)
Concepts definable in FOWA1 on weighted structures of small
degree can be learned in sublinear time with quasilinear-time
precomputation.
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