
Learning Aggregate Queries Defined by
First-Order Logicwith Counting

Steffen van Bergerem and Nicole Schweikardt

Highlights 2024



How to be a Good Colleague

Name Popularity

Alice 5
Bob 1
Carol 2
Dan 3
Emma 1

(names changed for privacy reasons)

Name Type of Cake

Alice chocolate
Dan lemon
Carol strawberry
Alice chocolate
Bob carrot
Emma apple
Dan chocolate
Alice strawberry
Carol lemon

Popularity = 2 · #chocolate cakes + #other cakes



How to be a Good Colleague

Name Popularity

Alice 5
Bob 1
Carol 2
Dan 3
Emma 1

(names changed for privacy reasons)

Name Type of Cake

Alice chocolate
Dan lemon
Carol strawberry
Alice chocolate
Bob carrot
Emma apple
Dan chocolate
Alice strawberry
Carol lemon

Popularity = 2 · #chocolate cakes + #other cakes



How to be a Good Colleague

Name Popularity

Alice 5
Bob 1
Carol 2
Dan 3
Emma 1

(names changed for privacy reasons)

Name Type of Cake

Alice chocolate
Dan lemon
Carol strawberry
Alice chocolate
Bob carrot
Emma apple
Dan chocolate
Alice strawberry
Carol lemon

Popularity = 2 · #chocolate cakes + #other cakes



How to be a Good Colleague

Name Popularity

Alice 5
Bob 1
Carol 2
Dan 3
Emma 1

(names changed for privacy reasons)

Name Type of Cake

Alice chocolate
Dan lemon
Carol strawberry
Alice chocolate
Bob carrot
Emma apple
Dan chocolate
Alice strawberry
Carol lemon

Popularity = 2 · #chocolate cakes + #other cakes



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



Learning from Examples

Precomputation: Given relational structure A, build index structure

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

Given list of labelled examples (v̄, λ) ∈
(
U(A)

)k × Z
Return term t(x̄) ∈ FOC1 (of certain maximum complexity)

such that Jt(v̄)KA = λ for all given examples (v̄, λ)

or reject if there is no such term



Learning from Examples

Precomputation: Given relational structure A, build index structure

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

Given list of labelled examples (v̄, λ) ∈
(
U(A)

)k × Z
Return term t(x̄) ∈ FOC1 (of certain maximum complexity)

such that Jt(v̄)KA = λ for all given examples (v̄, λ)

or reject if there is no such term



Results on structures of small degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in
sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or
first-order logic with weight aggregation can be learned in sublinear time
after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms

Bring more (chocol
ate) cak

es!

Come to the poster.
There will be cookies

.

Icons made by Freepik from Flaticon



Results on structures of small degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in
sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or
first-order logic with weight aggregation can be learned in sublinear time
after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms

Bring more (chocol
ate) cak

es!

Come to the poster.
There will be cookies

.

Icons made by Freepik from Flaticon



Results on structures of small degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in
sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or
first-order logic with weight aggregation can be learned in sublinear time
after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms

Bring more (chocol
ate) cak

es!

Come to the poster.
There will be cookies

.

Icons made by Freepik from Flaticon


