

Learning Aggregate Queries Defined by First-Order Logic with Counting

Steffen van Bergerem and Nicole Schweikardt

Highlights 2024

Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

-

Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

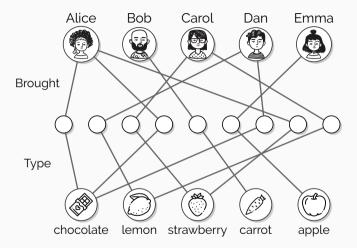
Name	Type of Cake
Alice	chocolate
Dan	lemon
Carol	strawberry
Alice	chocolate
Bob	carrot
Emma	apple
Dan	chocolate
Alice	strawberry
Carol	lemon

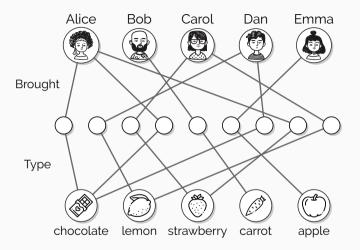
Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

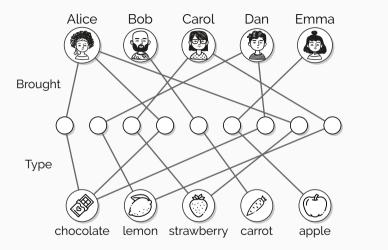
Name	Type of Cake
Alice	chocolate
Dan	lemon
Carol	strawberry
Alice	chocolate
Bob	carrot
Emma	apple
Dan	chocolate
Alice	strawberry
Carol	lemon

Popularity = $2 \cdot \#$ chocolate cakes + # other cakes





(Alice, 5) (Bob, 1) (Carol, 2) (Dan, 3) (Emma, 1)

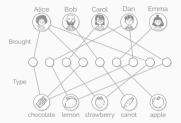


(Alice, 5) (Bob, 1) (Carol, 2) (Dan, 3) (Emma, 1)

 $p(x) = 2 \cdot \#(c).(Brought(x,c) \land Type(c, \circledast)) + \#(c).(Brought(x,c) \land \neg Type(c, \circledast))$

Learning from Examples

Precomputation: Given relational structure \mathcal{A} , build index structure



Learning from Examples

Precomputation: Given relational structure \mathcal{A} , build index structure

Given list of labelled examples $(\bar{v}, \lambda) \in (U(A))^k \times \mathbb{Z}$ **Return** term $t(\bar{x}) \in \text{FOC}_1$ (of certain maximum complexity) such that $[t(\bar{v})]^{\mathcal{A}} = \lambda$ for all given examples (\bar{v}, λ)

or reject if there is no such term

Results on structures of small degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or first-order logic with weight aggregation can be learned in sublinear time after quasi-linear-time precomputation.

Results on structures of small degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or first-order logic with weight aggregation can be learned in sublinear time after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms

Results on structures of small degree

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms