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- measure for richness/complexity of set families

- our main motivation: connections between VC dimension and
learnability of concepts that are definable in logics

- in probably approximately correct learning (PAC learning): number of
examples needed to learn a concept depends on the VC dimension

- Grohe and Turan (TOCS 2004) gave upper bounds for FO and MSO
definable concepts on several classes of structures
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- set X ={1,2,3,4}
~ family of subsets S = {{1,2},{2,3},{3,4},{1,2,4}} C 2¥

- subset U C X isshatteredby S if UNS={UNS|SeS}=2Y
- {1,2} is not shattered by S, since {1,2} NS = {{1,2},{2},{}}
- {1,4} is shattered by S, since {1,4} NS = {{1},{},{4},{1,4}}

- VC dimension of S is maximum size of a set shattered by S

- vedim(S) = |{1,4}| = 2
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- set X = (V(G)Y = (v(G))?
- 8¢ ={Sg" | veV(G)} where
SEY = {wiw> € X | G |= (v, w1, w>)}
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90()??)7) = (70(X7y1ay2) = E(Xayl) VX =Y

- set X = (v(G)" = (v(G))®
- 8¢ ={Sg" | veV(G)} where
SEY = {wiwz € X | G & (v, wa, W)}
- VCdim(g, G) := VCAIM(SE) = [{V4V3, V4Vs}| = 2
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VC Dimension of First-Order Logic

90()??)7) = (70(X7y1ay2) = E(Xayl) VX =Y

set X = (V@) = (v(G))?
Sg ={Sg" |veV(G)} where
Sé’v ={waw, € X ‘ G E (v, w1, W)}

VCd|m(Q0, G) = VCd|m(Sg) = |{V4V37 V4V4}| =2

VCdim(¢, G) € O(log |V (G)|) forallp and G
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VC Dimension of First-Order Logic

Let C be a nowhere dense graph class, and let ¢(X,y) be an FO formula.

Adler and Adler, 2014

There is a constant d € N such that VCdim(p,G) < d forall G € C.



Classes of Sparse Graphs
Illustration by Felix Reidl

Bounded expansion

Excluding a
topological minor

Excluding a minor

Bounded treewidth 5

Bounded treedepth Aa
Star forests *’

Nowhere dense

Locally bounded 23X
expansion 4

—~_—_ Bounded
— L genus

—___—Planar
Q')
®

NS
LLJ7 %ﬁ Outerplanar
(0 Ug

*&{ Forests PN

A~

Locally excluding
a minor

Locally bounded
treewidth

Bounded degree

Linear forests



VC Dimension of First-Order Logic

Let C be a nowhere dense graph class, and let ¢(X,y) be an FO formula.

Adler and Adler, 2014

There is a constant d € N such that VCdim(p,G) < d forall G € C.



VC Dimension of First-Order Logic

Let C be a nowhere dense graph class, and let ¢(X,y) be an FO formula.

Adler and Adler, 2014

There is a constant d € N such that VCdim(p,G) < d forall G € C.

Adler and Adler, 2014

There is a constant d € N such that the ladder index of ¢ in G is at most
d forall G € C. Thus, nowhere dense graph classes are stable.

Pilipczuk, Siebertz, and Torunczyk, 2018

The VC density of ¢ in G isat most |x| forall G € C. This bound is optimal.



VC Dimension of First-Order Logic

Let C be a nowhere dense graph class, and let ¢(X,y) be an FO formula.

Adler and Adler, 2014
There is a constant d € N such that VCdim(p,G) < d forall G € C.

Adler and Adler, 2014

There is a constant d € N such that the ladder index of ¢ in G is at most
d forall G € C. Thus, nowhere dense graph classes are stable.

Pilipczuk, Siebertz, and Torunczyk, 2018

The VC density of ¢ in G isat most |x| forall G € C. This bound is optimal.

v. B. and Schweikardt, 2025

All of the above also hold for nowhere dense classes of vertex- and
edge-weighted graphs and FOC; and FOWA; formulas.
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First-Order Logic with Weight Aggregation (FOWA)
Introduced in (v. B. and Schweikardt, CSL 2021)

Terms

- tx) =23, a(y) - Lx,y).E(x,y)

Formulas

- @10 = (3, a)-E(x,y) < X, aly)-~E(x.y))
= a0) =3y (#<z>.(E<x.,z>AE<y,z>> > 2)

FOWA,

- subformulas comparing terms may only
have at most one free variable
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Key result

Let C be a nowhere dense class of vertex- and edge-weighted graphs,
and let ¢(X,y) be an FOC; or FOWA; formula.

v. B. and Schweikardt, 2025

For every € > 0, there exists a constant ¢ such that for every G in C and
every non-empty W C V(G), we have

‘WIY’I mgg’ <c- |wRite,

This lifts a similar result from (Pilipczuk, Siebertz, and Torunczyk, 2018)
from FO to more expressive logics on more expressive graph classes.

main tool: locality results for FOWA,
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Main results

Let C be a howhere dense class of vertex- and edge-weighted graphs,
and let ¢(X,y) be an FOC; or FOWA; formula.

v. B. and Schweikardt, 2025

There is a constant d € N such that the VC dimension and the ladder
index of ¢ in G are at most d forall G € C.

v. B. and Schweikardt, 2025
The VC density of ¢ in G isat most |x| forall G € C.

v. B. and Schweikardt, 2025

There is an FOC, formula with unbounded VC dimension on the class of
all unranked trees of height at most 3.



