

Evaluation of First-Order Logic with Counting on Sparse Classes

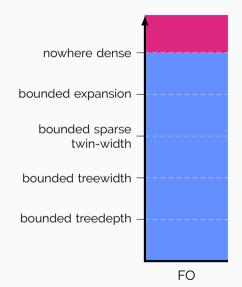
Steffen van Bergerem

Finite and Algorithmic Model Theory 2025

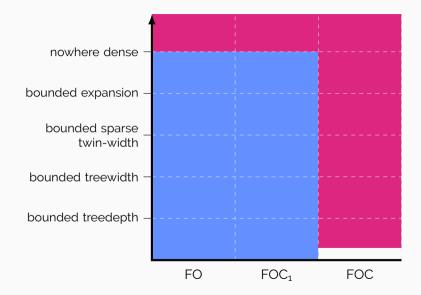
Given a graph *G* and an FO sentence φ **Decide** whether $G \models \varphi$

Given a relational structure A and an FO sentence φ **Decide** whether $A \models \varphi$

Model Checking on Sparse Classes



Model Checking on Sparse Classes



Counting terms

- *i* for every integer $i \in \mathbb{Z}$
- $\#(y_1, \ldots, y_k).\varphi(\bar{x}, \bar{y})$ for every FOC formula $\varphi(\bar{x}, \bar{y})$
- $t_1 + t_2$ and $t_1 \cdot t_2$ for all FOC counting terms t_1, t_2

Counting terms

- *i* for every integer $i \in \mathbb{Z}$
- $\#(y_1, \ldots, y_k).\varphi(\bar{x}, \bar{y})$ for every FOC formula $\varphi(\bar{x}, \bar{y})$
- $t_1 + t_2$ and $t_1 \cdot t_2$ for all FOC counting terms t_1, t_2

- every FO formula
- $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\exists x \varphi_1$ for all FOC formulas φ_1, φ_2
- $P(t_1, \ldots, t_m)$ for all FOC counting terms t_1, \ldots, t_m and $P \in \mathbb{P}$, $P \subseteq \mathbb{Z}^m$

Counting terms

- *i* for every integer $i \in \mathbb{Z}$
- $\#(y_1, \ldots, y_k).\varphi(\bar{x}, \bar{y})$ for every FOC formula $\varphi(\bar{x}, \bar{y})$
- $t_1 + t_2$ and $t_1 \cdot t_2$ for all FOC counting terms t_1, t_2

Formulas

- every FO formula
- $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\exists x \varphi_1$ for all FOC formulas φ_1, φ_2
- $P(t_1, \ldots, t_m)$ for all FOC counting terms t_1, \ldots, t_m and $P \in \mathbb{P}$, $P \subseteq \mathbb{Z}^m$

FOC_1

- introduced by Grohe and Schweikardt (PODS 2018)
- last rule may only be applied if $|\bigcup_{i=1}^{m} \operatorname{free}(t_i)| \leq 1$

Counting terms

-
$$t_1(x) = \#(y).E(x,y)$$

- $t_2 = \#(x_1,...,x_k).(\bigwedge_{1 \le i < j \le k} E(x_i,x_j))$

Counting terms

-
$$t_1(x) = \#(y).E(x,y)$$

- $t_2 = \#(x_1, \dots, x_k).(\bigwedge_{1 \le i < j \le k} E(x_i, x_j))$

$$- \varphi_1(x) = (\#(y).E(x,y) \leqslant \#(y).\neg E(x,y))$$

$$- \varphi_2(x) = \exists y \, E(x, y) \land (t_1(x) \leqslant t_1(y))$$

Counting terms

$$- t_1(x) = \#(y).E(x,y) - t_2 = \#(x_1,...,x_k).(\bigwedge_{1 \le i < j \le k} E(x_i,x_j)) - t_3 = t_2 + \#(x).\varphi_1(x)$$

$$- \varphi_1(x) = (\#(y).E(x,y) \leq \#(y).\neg E(x,y))$$

$$- \varphi_2(x) = \exists y \, E(x, y) \land (t_1(x) \leq t_1(y))$$

Counting terms

$$- t_1(x) = \#(y).E(x,y) - t_2 = \#(x_1,...,x_k).(\bigwedge_{1 \le i < j \le k} E(x_i,x_j)) - t_3 = t_2 + \#(x).\varphi_1(x)$$

Formulas

$$- \varphi_1(x) = (\#(y).E(x,y) \leqslant \#(y).\neg E(x,y))$$

$$- \varphi_2(x) = \exists y \, E(x, y) \land (t_1(x) \leqslant t_1(y))$$

FOC₁

- introduced by Grohe and Schweikardt (PODS 2018)
- subformulas comparing terms have at most one free variable

Counting terms

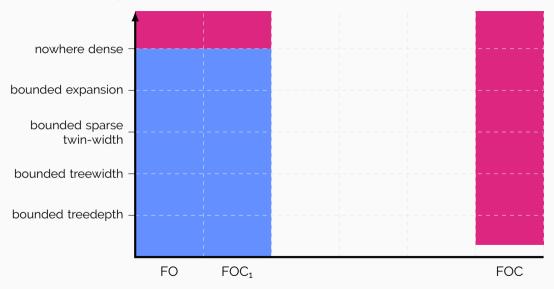
- $t_1(x) = \#(y).E(x,y)$
- $t_2 = \#(x_1, \ldots, x_k) \cdot \left(\bigwedge_{1 \leq i < j \leq k} E(x_i, x_j) \right)$
- $t_3 = t_2 + \#(x).\varphi_1(x)$

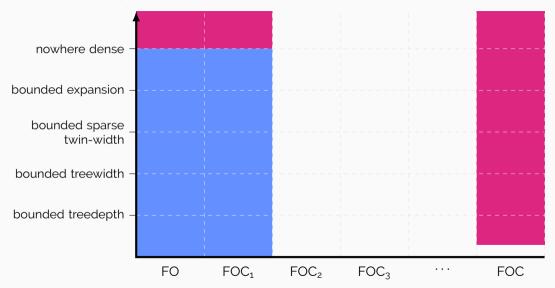
Formulas

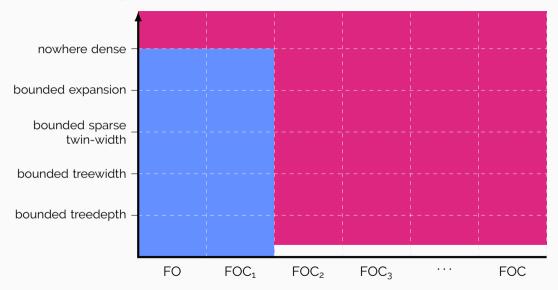
- $\varphi_1(x) = (\#(y).E(x,y) \leq \#(y).\neg E(x,y))$
- $\varphi_2(x) = \exists y E(x, y) \land (t_1(x) \leq t_1(y))$

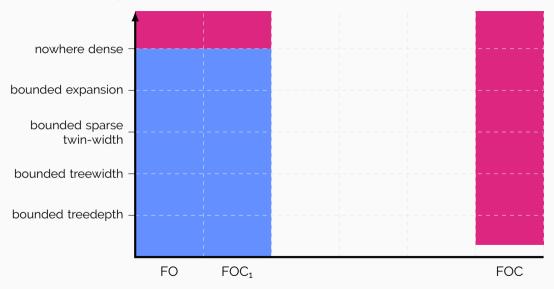
FOC₁

- introduced by Grohe and Schweikardt (PODS 2018)
- subformulas comparing terms have at most one free variable









\mathbf{FOC}_1

subformulas comparing terms have at most one free variable

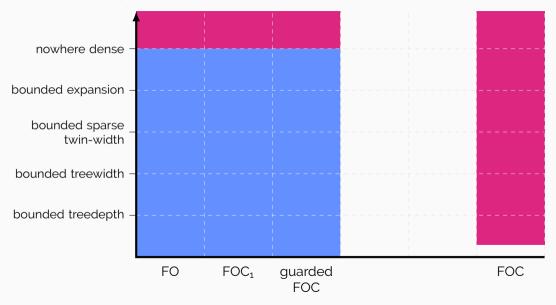
FOC_1

subformulas comparing terms have at most one free variable

guarded FOC

free variables in subformulas comparing terms are guarded by an atom

- $E(x,y) \wedge (t_1(x) \leq t_1(y))$
- $R(\bar{x}) \wedge (t(\bar{y}) \leqslant t'(\bar{z}))$, where $\bar{y}, \bar{z} \subseteq \bar{x}$



FOC_1

subformulas comparing terms have at most one free variable

guarded FOC

free variables in subformulas comparing terms are guarded by an atom

- $E(x,y) \wedge (t_1(x) \leq t_1(y))$
- $R(\bar{x}) \wedge (t(\bar{y}) \leqslant t'(\bar{z}))$, where $\bar{y}, \bar{z} \subseteq \bar{x}$

FOC_1

subformulas comparing terms have at most one free variable

guarded FOC

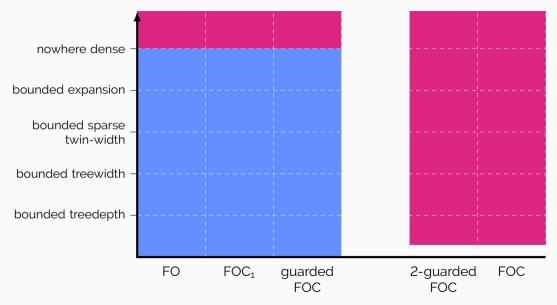
free variables in subformulas comparing terms are guarded by an atom

- $E(x,y) \wedge (t_1(x) \leq t_1(y))$
- $R(\bar{x}) \wedge (t(\bar{y}) \leqslant t'(\bar{z}))$, where $\bar{y}, \bar{z} \subseteq \bar{x}$

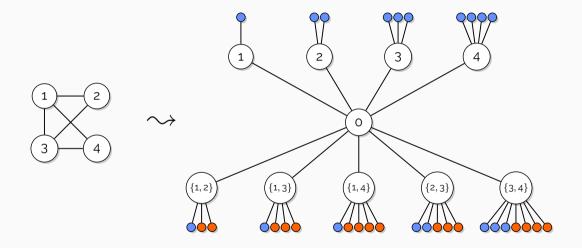
2-guarded FOC

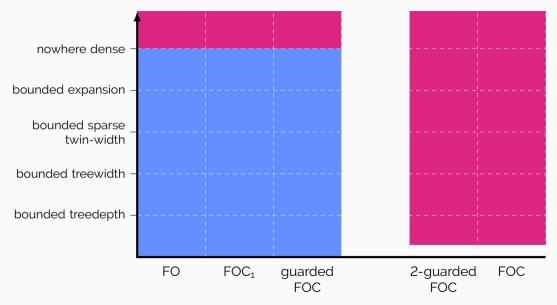
free variables [...] are guarded by two intersecting atoms

- $E(x,y) \wedge E(y,z) \wedge (t_1(x) \leq t_1(z))$



Hardness of 2-Guarded FOC





FOC_1

subformulas comparing terms have at most one free variable

guarded FOC

free variables in subformulas comparing terms are guarded by an atom

- $E(x,y) \wedge (t_1(x) \leq t_1(y))$
- $R(\bar{x}) \wedge (t(\bar{y}) \leqslant t'(\bar{z}))$, where $\bar{y}, \bar{z} \subseteq \bar{x}$

2-guarded FOC

free variables [...] are guarded by two intersecting atoms

- $E(x,y) \wedge E(y,z) \wedge (t_1(x) \leq t_1(z))$

\mathbf{FOC}_1

subformulas comparing terms have at most one free variable

guarded FOC

free variables in subformulas comparing terms are guarded by an atom

- $E(x,y) \wedge (t_1(x) \leq t_1(y))$
- $R(\bar{x}) \wedge (t(\bar{y}) \leqslant t'(\bar{z}))$, where $\bar{y}, \bar{z} \subseteq \bar{x}$

2-guarded FOC

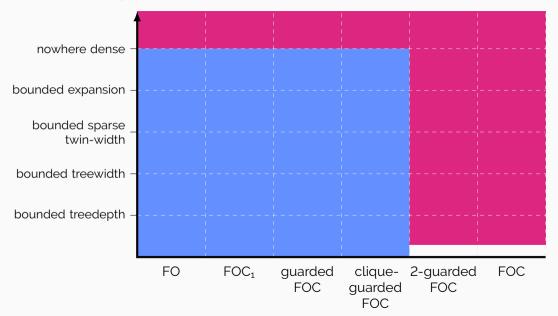
free variables [...] are guarded by two intersecting atoms

 $- E(x,y) \wedge E(y,z) \wedge (t_1(x) \leq t_1(z))$

clique-guarded FOC

every pair of free variables [...] is guarded by an atom

- $E(x,y) \wedge E(y,z) \wedge E(x,z) \wedge (t(x,y,z) \leq t'(x,z))$



Main Results

Tractabilty

For every effectively nowhere dense class C and every $\varepsilon > 0$, there is an algorithm that solves model-checking and term-evaluation for clique-guarded FOC on every structure $\mathcal{A} \in C$ in time $\mathcal{O}_{\mathcal{C},\xi,\sigma,\varepsilon}(|U(\mathcal{A})|^{1+\varepsilon})$.

Hardness

Model-checking for 2-guarded FOC is AW[*]-hard on the class of unranked trees of height at most 3.

