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First-Order Model Checking

Given a graph G and an FO sentence ϕ

Decide whether G |= ϕ

Given a relational structure A and an FO sentence ϕ

Decide whether A |= ϕ



Model Checking on Sparse Classes

FO FOC1 FOC

bounded treedepth

bounded treewidth

bounded sparse
twin-width

bounded expansion

nowhere dense



Model Checking on Sparse Classes

FO FOC1 FOC

bounded treedepth

bounded treewidth

bounded sparse
twin-width

bounded expansion

nowhere dense



First-Order Logicwith Counting (FOC)

Counting terms

– i for every integer i ∈ Z
– #(y1, . . . , yk).ϕ(x̄, ȳ) for every FOC formula ϕ(x̄, ȳ)
– t1 + t2 and t1 · t2 for all FOC counting terms t1, t2

Formulas

– every FO formula

– ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ∃xϕ1 for all FOC formulas ϕ1, ϕ2

– P(t1, . . . , tm) for all FOC counting terms t1, . . . , tm and P ∈ P, P ⊆ Zm

FOC1

– introduced by Grohe and Schweikardt (PODS 2018)

– last rule may only be applied if |
⋃m

i=1 free(ti)| 6 1
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– #(y1, . . . , yk).ϕ(x̄, ȳ) for every FOC formula ϕ(x̄, ȳ)
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First-Order Logicwith Counting (FOC)

Counting terms

– t1(x) = #(y).E(x, y)
– t2 = #(x1, . . . , xk).

(∧
16i<j6k E(xi, xj)

)

– t3 = t2 + #(x).ϕ1(x)

Formulas

– ϕ1(x) =
(
#(y).E(x, y) 6 #(y).¬E(x, y)

)
– ϕ2(x) = ∃y E(x, y) ∧

(
t1(x) 6 t1(y)

)
FOC1

– introduced by Grohe and Schweikardt (PODS 2018)

– subformulas comparing terms have at most one free variable
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Guarded FOC

FOC1

subformulas comparing terms have at most one free variable

guarded FOC
free variables in subformulas comparing terms are guarded by an atom

– E(x, y) ∧
(
t1(x) 6 t1(y)

)
– R(x̄) ∧

(
t(ȳ) 6 t′(z̄)

)
, where ȳ, z̄ ⊆ x̄

2-guarded FOC
free variables […] are guarded by two intersecting atoms

– E(x, y) ∧ E(y, z) ∧
(
t1(x) 6 t1(z)

)
clique-guarded FOC
every pair of free variables […] is guarded by an atom

– E(x, y) ∧ E(y, z) ∧ E(x, z) ∧
(
t(x, y, z) 6 t′(x, z)

)
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t(ȳ) 6 t′(z̄)

)
, where ȳ, z̄ ⊆ x̄
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Hardness of 2-Guarded FOC
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Main Results

Tractabilty

For every effectively nowhere dense class C and every ε > 0,
there is an algorithm that solves model-checking and term-evaluation for
clique-guarded FOC on every structure A ∈ C in time OC,ξ,σ,ε(|U(A)|1+ε).

Hardness

Model-checking for 2-guarded FOC is AW[∗]-hard on the class of
unranked trees of height at most 3.
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