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How to be a Good Colleague

Name Popularity

Alice 5
Bob 1
Carol 2
Dan 3
Emma 1

(names changed for privacy reasons)

Name Type of Cake

Alice chocolate
Dan lemon
Carol strawberry
Alice chocolate
Bob carrot
Emma apple
Dan chocolate
Alice strawberry
Carol lemon

Popularity = 2 · #chocolate cakes + #other cakes
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How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



How to be a Good Colleague

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

p(x) = 2 · #(c).
(
Brought(x, c) ∧ Type(c, )

)
+ #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)



Learning from Examples

Precomputation phase

Given a database D, build index structure

strawberrylemonchocolate carrot apple

Brought

Type

Alice Bob Carol Dan Emma

(Alice, 5)
(Bob, 1)
(Carol, 2)
(Dan, 3)
(Emma, 1)

Learning phase

Given list of labelled examples (v̄, λ) ∈
(
U(D)

)k × Z
Return term t(x̄) ∈ FOC1 (of certain maximum complexity)

such that Jt(v̄)KD = λ for all given examples (v̄, λ)

or reject if there is no such term
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Results on databases of polylogarithmic degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in
sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or
first-order logic with weight aggregation can be learned in sublinear time
after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms
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First-Order Logicwith Counting (FOC)

Counting terms

– t (x) = #(c).
(
Brought(x, c) ∧ Type(c, )

)
– t¬ (x) = #(c).

(
Brought(x, c) ∧ ¬Type(c, )

)
– p(x) = 2 · t (x) + t¬ (x)
– q = #(x).ϕ1(x)

Formulas

– ϕ1(x) = t (x) 6 t¬ (x)
– ϕ2(x) = ∀y

(
t (y) 6 t (x)

)
FOC1

– introduced by Grohe and Schweikardt (PODS 2018)
– subformulas comparing terms have at most one free variable
– has Gaifman-style normal forms
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Main result

v. B. and Schweikardt, ICDT 2025

For integer-valued concepts definable in the first-order logic with counting
FOC1, there is an algorithm for the learning problemwith

– precomputation phase in n · dO(1)

– learning phase in (d + t)O(1)

(n: size of active domain, d: degree of the database, t: number of examples)

For databases of polylogarithmic degree:

– precomputation phase in quasi-linear time n · (log n)O(1)

– learning phase in time polylogarithmic in the size of the database
(log n + t)O(1)
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Discussion

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in polylog time after quasi-linear-time precomputation.

– data complexity vs. parameterised complexity

– consistent learning vs. probably approximately correct (PAC) learning

– logics with weight aggregation

Bring more (chocolate) cakes!

Icons made by Freepik from Flaticon



Discussion

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be
learned in polylog time after quasi-linear-time precomputation.

– data complexity vs. parameterised complexity

– consistent learning vs. probably approximately correct (PAC) learning

– logics with weight aggregation

Bring more (chocolate) cakes!

Icons made by Freepik from Flaticon


