

Learning Aggregate Queries Defined by First-Order Logic with Counting

Steffen van Bergerem and Nicole Schweikardt

ICDT 2025

Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

-

Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

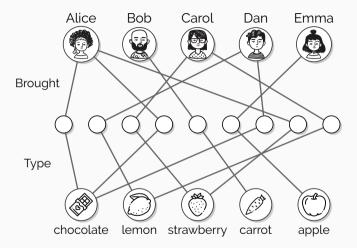
Name	Type of Cake
Alice	chocolate
Dan	lemon
Carol	strawberry
Alice	chocolate
Bob	carrot
Emma	apple
Dan	chocolate
Alice	strawberry
Carol	lemon

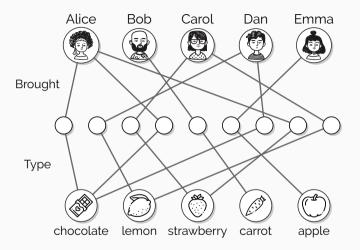
Name	Popularity
Alice	5
Bob	1
Carol	2
Dan	3
Emma	1

(names changed for privacy reasons)

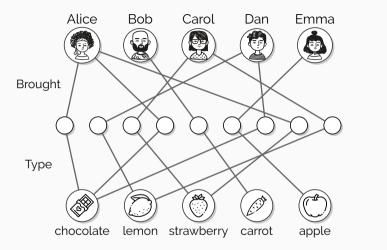
Name	Type of Cake
Alice	chocolate
Dan	lemon
Carol	strawberry
Alice	chocolate
Bob	carrot
Emma	apple
Dan	chocolate
Alice	strawberry
Carol	lemon

Popularity = $2 \cdot \#$ chocolate cakes + # other cakes





(Alice, 5) (Bob, 1) (Carol, 2) (Dan, 3) (Emma, 1)



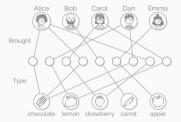
(Alice, 5) (Bob, 1) (Carol, 2) (Dan, 3) (Emma, 1)

 $p(x) = 2 \cdot \#(c).(Brought(x,c) \land Type(c,)) + \#(c).(Brought(x,c) \land \neg Type(c,))$

Learning from Examples

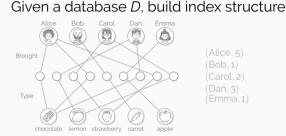
Precomputation phase

Given a database D, build index structure



Learning from Examples

Precomputation phase



Learning phase

Given list of labelled examples $(\bar{\nu}, \lambda) \in (U(D))^k \times \mathbb{Z}$

Return term $t(\bar{x}) \in \text{FOC}_1$ (of certain maximum complexity) such that $[t(\bar{v})]^D = \lambda$ for all given examples (\bar{v}, λ)

or reject if there is no such term

Results on databases of polylogarithmic degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or first-order logic with weight aggregation can be learned in sublinear time after quasi-linear-time precomputation.

Results on databases of polylogarithmic degree

Grohe and Ritzert, LICS 2017

Boolean-valued concepts definable in first-order logic can be learned in sublinear time.

v. B. and Schweikardt, CSL 2021

Boolean-valued concepts definable in first-order logic with counting or first-order logic with weight aggregation can be learned in sublinear time after quasi-linear-time precomputation.

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be learned in sublinear time after quasi-linear-time precomputation.

Main tool: locality results similar to Gaifman normal forms

Counting terms

Counting terms

$$- t_{\mathfrak{F}}(x) = \#(c).(Brought(x,c) \land Type(c, \mathfrak{F}))$$

$$- t_{\neg \mathfrak{B}}(x) = \#(c).(Brought(x,c) \land \neg Type(c, \mathfrak{B}))$$

Counting terms

$$\begin{array}{l} - t_{(x)}(x) = \#(c).(Brought(x,c) \land Type(c,)) \\ - t_{\neg}(x) = \#(c).(Brought(x,c) \land \neg Type(c,)) \\ - p(x) = 2 \cdot t_{(x)}(x) + t_{\neg}(x) \end{array}$$

Counting terms

$$- t_{\mathfrak{P}}(x) = \#(c).(Brought(x,c) \land Type(c, \mathfrak{P})) - t_{\neg \mathfrak{P}}(x) = \#(c).(Brought(x,c) \land \neg Type(c, \mathfrak{P})) - p(x) = 2 \cdot t_{\mathfrak{P}}(x) + t_{\neg \mathfrak{P}}(x)$$

- $\begin{array}{l} \ \varphi_1(x) = t_{\mathcal{P}}(x) \leqslant t_{\neg \mathcal{P}}(x) \\ \ \varphi_2(x) = \forall y \ (t_{\mathcal{P}}(y) \leqslant t_{\mathcal{P}}(x)) \end{array} \end{array}$

Counting terms

$$\begin{array}{l} - t_{(x)}(x) = \#(c).(Brought(x,c) \land Type(c, \circledast)) \\ - t_{(x)}(x) = \#(c).(Brought(x,c) \land \neg Type(c, \circledast)) \\ - p(x) = 2 \cdot t_{(x)}(x) + t_{(x)}(x) \\ - q = \#(x).\varphi_1(x) \end{array}$$

$$- \varphi_1(x) = t_{\text{res}}(x) \leqslant t_{\neg \text{res}}(x)$$

$$- \varphi_2(x) = \forall y \left(t_{\mathfrak{P}}(y) \leqslant t_{\mathfrak{P}}(x) \right)$$

Counting terms

- $t_{(x)}(x) = \#(c).(Brought(x,c) \land Type(c,))$
- $-t_{\neg \mathscr{P}}(x) = \#(c).(Brought(x,c) \land \neg Type(c, \mathscr{P}))$
- $-p(\tilde{x}) = 2 \cdot t_{\mathfrak{S}}(x) + t_{\neg \mathfrak{S}}(x)$
- $q = \#(x).\varphi_1(x)$

Formulas

- $\varphi_1(x) = t_{\text{O}}(x) \leqslant t_{\neg \text{O}}(x)$
- $\varphi_2(x) = \forall y \left(t_{\text{P}}(y) \leqslant t_{\text{P}}(x) \right)$

FOC₁

- introduced by Grohe and Schweikardt (PODS 2018)
- subformulas comparing terms have at most one free variable
- has Gaifman-style normal forms

Main result

v. B. and Schweikardt, ICDT 2025

For integer-valued concepts definable in the first-order logic with counting FOC_1 , there is an algorithm for the learning problem with

- precomputation phase in $n \cdot d^{\mathcal{O}(1)}$
- learning phase in $(d + t)^{\mathcal{O}(1)}$

(n: size of active domain, d: degree of the database, t: number of examples)

Main result

v. B. and Schweikardt, ICDT 2025

For integer-valued concepts definable in the first-order logic with counting FOC_1 , there is an algorithm for the learning problem with

- precomputation phase in $n \cdot d^{\mathcal{O}(1)}$
- learning phase in $(d + t)^{\mathcal{O}(1)}$

(n: size of active domain, d: degree of the database, t: number of examples)

For databases of polylogarithmic degree:

- precomputation phase in quasi-linear time $n \cdot (\log n)^{\mathcal{O}(1)}$
- **learning phase** in time polylogarithmic in the size of the database $(\log n + t)^{\mathcal{O}(1)}$

Discussion

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be learned in polylog time after quasi-linear-time precomputation.

Discussion

v. B. and Schweikardt, ICDT 2025

Integer-valued concepts definable in first-order logic with counting can be learned in polylog time after quasi-linear-time precomputation.

- data complexity vs. parameterised complexity
- consistent learning vs. probably approximately correct (PAC) learning
- logics with weight aggregation

